mirror of
https://github.com/d3/d3.git
synced 2025-12-08 19:46:24 +00:00
163 lines
5.9 KiB
Markdown
163 lines
5.9 KiB
Markdown
# Connected scatterplot
|
||
|
||
This is a recreation of Hannah Fairfield’s [*Driving Shifts Into Reverse*](https://www.nytimes.com/imagepages/2010/05/02/business/02metrics.html), sans annotations. See also Fairfield’s [*Driving Safety, in Fits and Starts*](https://www.nytimes.com/interactive/2012/09/17/science/driving-safety-in-fits-and-starts.html), [Noah Veltman’s variation](https://blocks.roadtolarissa.com/veltman/87596f5a256079b95eb9) of this graphic, and [a paper on connected scatterplots](http://steveharoz.com/research/connected_scatterplot/) by Haroz *et al.*
|
||
|
||
```js
|
||
const replay = view(Inputs.button("Replay"));
|
||
```
|
||
|
||
```js
|
||
replay;
|
||
display(ConnectedScatterplot(driving));
|
||
```
|
||
|
||
```js run=false
|
||
ConnectedScatterplot(driving)
|
||
```
|
||
|
||
We create the chart with the `ConnectedScatterplot` function shown below. It takes tabular data as input — one row for each data point. The **side** column indicates where we want the year label to be displayed next to the point in the scatterplot (these values have been hand-picked to limit occlusion). The other columns are the **year**, the average **miles** per person and the cost of **gas** that year. Click on the `Array` symbol below to inspect the data:
|
||
|
||
```js
|
||
driving
|
||
```
|
||
|
||
```js echo
|
||
const driving = FileAttachment("/data/driving.csv").csv({typed: true});
|
||
```
|
||
|
||
<div style="font-size: 0.8em; padding-left: 1em; border-left: solid 2px var(--theme-foreground-fainter);">
|
||
|
||
👆 This code snippet loads a static Observable Framework CSV [`FileAttachment`](https://observablehq.com/framework/files), parsing typed values such as numbers. For your own chart you’ll want to create a similar data structure—maybe by reading from an API with [`d3.csv`](https://d3js.org/d3-dsv), or by running a [`sql`](https://observablehq.com/framework/sql) query on a database.
|
||
|
||
</div>
|
||
|
||
```js echo
|
||
function ConnectedScatterplot(driving) {
|
||
// Declare the chart dimensions and margins.
|
||
const width = 928;
|
||
const height = 720;
|
||
const marginTop = 20;
|
||
const marginRight = 30;
|
||
const marginBottom = 30;
|
||
const marginLeft = 40;
|
||
|
||
// Declare the positional encodings.
|
||
const x = d3.scaleLinear()
|
||
.domain(d3.extent(driving, (d) => d.miles))
|
||
.nice()
|
||
.range([marginLeft, width - marginRight]);
|
||
|
||
const y = d3.scaleLinear()
|
||
.domain(d3.extent(driving, (d) => d.gas))
|
||
.nice()
|
||
.range([height - marginBottom, marginTop]);
|
||
|
||
const line = d3.line()
|
||
.curve(d3.curveCatmullRom)
|
||
.x((d) => x(d.miles))
|
||
.y((d) => y(d.gas));
|
||
|
||
const svg = d3.create("svg")
|
||
.attr("width", width)
|
||
.attr("height", height)
|
||
.attr("viewBox", [0, 0, width, height])
|
||
.attr("style", "max-width: 100%; height: auto;");
|
||
|
||
const l = length(line(driving));
|
||
|
||
svg.append("g")
|
||
.attr("transform", `translate(0,${height - marginBottom})`)
|
||
.call(d3.axisBottom(x).ticks(width / 80))
|
||
.call((g) => g.select(".domain").remove())
|
||
.call((g) => g.selectAll(".tick line").clone()
|
||
.attr("y2", -height)
|
||
.attr("stroke-opacity", 0.1))
|
||
.call((g) => g.append("text")
|
||
.attr("x", width - 4)
|
||
.attr("y", -4)
|
||
.attr("font-weight", "bold")
|
||
.attr("text-anchor", "end")
|
||
.attr("fill", "currentColor")
|
||
.text("Miles per person per year"));
|
||
|
||
svg.append("g")
|
||
.attr("transform", `translate(${marginLeft},0)`)
|
||
.call(d3.axisLeft(y).ticks(null, "$.2f"))
|
||
.call((g) => g.select(".domain").remove())
|
||
.call((g) => g.selectAll(".tick line").clone()
|
||
.attr("x2", width).attr("stroke-opacity", 0.1))
|
||
.call((g) => g.select(".tick:last-of-type text").clone()
|
||
.attr("x", 4)
|
||
.attr("text-anchor", "start")
|
||
.attr("font-weight", "bold")
|
||
.text("Cost per gallon"));
|
||
|
||
svg.append("path")
|
||
.datum(driving)
|
||
.attr("fill", "none")
|
||
.attr("stroke", "currentColor")
|
||
.attr("stroke-width", 2.5)
|
||
.attr("stroke-linejoin", "round")
|
||
.attr("stroke-linecap", "round")
|
||
.attr("stroke-dasharray", `0,${l}`)
|
||
.attr("d", line)
|
||
.transition()
|
||
.duration(5000)
|
||
.ease(d3.easeLinear)
|
||
.attr("stroke-dasharray", `${l},${l}`);
|
||
|
||
svg.append("g")
|
||
.attr("fill", "var(--theme-background)")
|
||
.attr("stroke", "currentColor")
|
||
.attr("stroke-width", 2)
|
||
.selectAll("circle")
|
||
.data(driving)
|
||
.join("circle")
|
||
.attr("cx", (d) => x(d.miles))
|
||
.attr("cy", (d) => y(d.gas))
|
||
.attr("r", 3);
|
||
|
||
const label = svg.append("g")
|
||
.attr("font-family", "sans-serif")
|
||
.attr("font-size", 10)
|
||
.selectAll()
|
||
.data(driving)
|
||
.join("text")
|
||
.attr("transform", (d) => `translate(${x(d.miles)},${y(d.gas)})`)
|
||
.attr("fill-opacity", 0)
|
||
.text((d) => d.year)
|
||
.attr("stroke", "var(--theme-background)")
|
||
.attr("paint-order", "stroke")
|
||
.attr("fill", "currentColor")
|
||
.each(function (d) {
|
||
const t = d3.select(this);
|
||
switch (d.side) {
|
||
case "top": t.attr("text-anchor", "middle").attr("dy", "-0.7em"); break;
|
||
case "right": t.attr("dx", "0.5em").attr("dy", "0.32em").attr("text-anchor", "start"); break;
|
||
case "bottom": t.attr("text-anchor", "middle").attr("dy", "1.4em"); break;
|
||
case "left": t.attr("dx", "-0.5em").attr("dy", "0.32em").attr("text-anchor", "end"); break;
|
||
}
|
||
});
|
||
|
||
label.transition()
|
||
.delay((d, i) => (length(line(driving.slice(0, i + 1))) / l) * (5000 - 125))
|
||
.attr("fill-opacity", 1);
|
||
|
||
return svg.node();
|
||
}
|
||
```
|
||
|
||
The _length_ helper computes the total length of the given SVG _path_ string; this is needed to apply the transition of `stroke-dasharray` across the length of the stroke.
|
||
|
||
```js echo
|
||
function length(path) {
|
||
return d3.create("svg:path").attr("d", path).node().getTotalLength();
|
||
}
|
||
```
|
||
|
||
<div class=tip>
|
||
|
||
For a simpler approach using Observable Plot’s concise API, see [Plot: Connected scatterplot](https://observablehq.com/@observablehq/plot-connected-scatterplot).
|
||
|
||
</div>
|