# Connected scatterplot This is a recreation of Hannah Fairfield’s [*Driving Shifts Into Reverse*](https://www.nytimes.com/imagepages/2010/05/02/business/02metrics.html), sans annotations. See also Fairfield’s [*Driving Safety, in Fits and Starts*](https://www.nytimes.com/interactive/2012/09/17/science/driving-safety-in-fits-and-starts.html), [Noah Veltman’s variation](https://blocks.roadtolarissa.com/veltman/87596f5a256079b95eb9) of this graphic, and [a paper on connected scatterplots](http://steveharoz.com/research/connected_scatterplot/) by Haroz *et al.* ```js const replay = view(Inputs.button("Replay")); ``` ```js replay; display(ConnectedScatterplot(driving)); ``` ```js run=false ConnectedScatterplot(driving) ``` We create the chart with the `ConnectedScatterplot` function shown below. It takes tabular data as input — one row for each data point. The **side** column indicates where we want the year label to be displayed next to the point in the scatterplot (these values have been hand-picked to limit occlusion). The other columns are the **year**, the average **miles** per person and the cost of **gas** that year. Click on the `Array` symbol below to inspect the data: ```js driving ``` ```js echo const driving = FileAttachment("/data/driving.csv").csv({typed: true}); ```
👆 This code snippet loads a static Observable Framework CSV [`FileAttachment`](https://observablehq.com/framework/files), parsing typed values such as numbers. For your own chart you’ll want to create a similar data structure—maybe by reading from an API with [`d3.csv`](https://d3js.org/d3-dsv), or by running a [`sql`](https://observablehq.com/framework/sql) query on a database.
```js echo function ConnectedScatterplot(driving) { // Declare the chart dimensions and margins. const width = 928; const height = 720; const marginTop = 20; const marginRight = 30; const marginBottom = 30; const marginLeft = 40; // Declare the positional encodings. const x = d3.scaleLinear() .domain(d3.extent(driving, (d) => d.miles)) .nice() .range([marginLeft, width - marginRight]); const y = d3.scaleLinear() .domain(d3.extent(driving, (d) => d.gas)) .nice() .range([height - marginBottom, marginTop]); const line = d3.line() .curve(d3.curveCatmullRom) .x((d) => x(d.miles)) .y((d) => y(d.gas)); const svg = d3.create("svg") .attr("width", width) .attr("height", height) .attr("viewBox", [0, 0, width, height]) .attr("style", "max-width: 100%; height: auto;"); const l = length(line(driving)); svg.append("g") .attr("transform", `translate(0,${height - marginBottom})`) .call(d3.axisBottom(x).ticks(width / 80)) .call((g) => g.select(".domain").remove()) .call((g) => g.selectAll(".tick line").clone() .attr("y2", -height) .attr("stroke-opacity", 0.1)) .call((g) => g.append("text") .attr("x", width - 4) .attr("y", -4) .attr("font-weight", "bold") .attr("text-anchor", "end") .attr("fill", "currentColor") .text("Miles per person per year")); svg.append("g") .attr("transform", `translate(${marginLeft},0)`) .call(d3.axisLeft(y).ticks(null, "$.2f")) .call((g) => g.select(".domain").remove()) .call((g) => g.selectAll(".tick line").clone() .attr("x2", width).attr("stroke-opacity", 0.1)) .call((g) => g.select(".tick:last-of-type text").clone() .attr("x", 4) .attr("text-anchor", "start") .attr("font-weight", "bold") .text("Cost per gallon")); svg.append("path") .datum(driving) .attr("fill", "none") .attr("stroke", "currentColor") .attr("stroke-width", 2.5) .attr("stroke-linejoin", "round") .attr("stroke-linecap", "round") .attr("stroke-dasharray", `0,${l}`) .attr("d", line) .transition() .duration(5000) .ease(d3.easeLinear) .attr("stroke-dasharray", `${l},${l}`); svg.append("g") .attr("fill", "var(--theme-background)") .attr("stroke", "currentColor") .attr("stroke-width", 2) .selectAll("circle") .data(driving) .join("circle") .attr("cx", (d) => x(d.miles)) .attr("cy", (d) => y(d.gas)) .attr("r", 3); const label = svg.append("g") .attr("font-family", "sans-serif") .attr("font-size", 10) .selectAll() .data(driving) .join("text") .attr("transform", (d) => `translate(${x(d.miles)},${y(d.gas)})`) .attr("fill-opacity", 0) .text((d) => d.year) .attr("stroke", "var(--theme-background)") .attr("paint-order", "stroke") .attr("fill", "currentColor") .each(function (d) { const t = d3.select(this); switch (d.side) { case "top": t.attr("text-anchor", "middle").attr("dy", "-0.7em"); break; case "right": t.attr("dx", "0.5em").attr("dy", "0.32em").attr("text-anchor", "start"); break; case "bottom": t.attr("text-anchor", "middle").attr("dy", "1.4em"); break; case "left": t.attr("dx", "-0.5em").attr("dy", "0.32em").attr("text-anchor", "end"); break; } }); label.transition() .delay((d, i) => (length(line(driving.slice(0, i + 1))) / l) * (5000 - 125)) .attr("fill-opacity", 1); return svg.node(); } ``` The _length_ helper computes the total length of the given SVG _path_ string; this is needed to apply the transition of `stroke-dasharray` across the length of the stroke. ```js echo function length(path) { return d3.create("svg:path").attr("d", path).node().getTotalLength(); } ```
For a simpler approach using Observable Plot’s concise API, see [Plot: Connected scatterplot](https://observablehq.com/@observablehq/plot-connected-scatterplot).