mirror of
https://github.com/josdejong/mathjs.git
synced 2026-01-25 15:07:57 +00:00
documentation
This commit is contained in:
parent
586b93bcf3
commit
f40e46a7ce
@ -0,0 +1,120 @@
|
||||
Algorithms for the implementation of element wise operations between a Dense and Sparse matrices:
|
||||
|
||||
- **Algorithm 1 `x(dense, sparse)`**
|
||||
* Algorithm should clone `DenseMatrix` and call the `x(d(i,j), s(i,j))` operation for the items in the Dense and Sparse matrices (iterating on the Sparse matrix nonzero items), updating the cloned matrix.
|
||||
* Output type is a `DenseMatrix` (the cloned matrix)
|
||||
* `x()` operation invoked NZ times (number of nonzero items in `SparseMatrix`)
|
||||
|
||||
**Cij = x(Dij, Sij); Sij != 0**
|
||||
**Cij = Dij ; otherwise**
|
||||
|
||||
_ **Algorithm 2 `x(dense, sparse)`**
|
||||
* Algorithm should iterate `SparseMatrix` (nonzero items) and call the `x(d(i,j),s(i,j))` operation for the items in the Sparse and Dense matrices (since zero & X == zero)
|
||||
* Output type is a `SparseMatrix` since the number of nonzero items will be less or equal the number of nonzero elements in the Sparse Matrix.
|
||||
* `x()` operation invoked NZ times (number of nonzero items in `SparseMatrix`)
|
||||
|
||||
**Cij = x(Dij, Sij); Sij != 0**
|
||||
**Cij = 0 ; otherwise**
|
||||
|
||||
- **Algorithm 3 `x(dense, sparse)`**
|
||||
* Algorithm should iterate `SparseMatrix` (nonzero and zero items) and call the `x(s(i,j),d(i,j))` operation for the items in the Dense and Sparse matrices
|
||||
* Output type is a `DenseMatrix`
|
||||
* `x()` operation invoked M*N times
|
||||
|
||||
**Cij = x(Dij, Sij); Sij != 0**
|
||||
**Cij = x(Dij, 0); otherwise**
|
||||
|
||||
- **Algorithm 4 `x(sparse, sparse)`**
|
||||
* Algorithm should iterate on the nonzero values of matrices A and B and call `x(Aij, Bij)` when both matrices contain value at (i,j)
|
||||
* Output type is a `SparseMatrix`
|
||||
* `x()` operation invoked NZ times (number of nonzero items at the same (i,j) for both matrices)
|
||||
|
||||
**Cij = x(Aij, Bij); Aij != 0 && Bij != 0**
|
||||
**Cij = Aij; Aij != 0**
|
||||
**Cij = Bij; Bij != 0**
|
||||
|
||||
Algorithms for the implementation of element wise operations between a Sparse matrices:
|
||||
|
||||
- **Algorithm 5 `x(sparse, sparse)`**
|
||||
* Algorithm should iterate on the nonzero values of matrices A and B and call `x(Aij, Bij)` for every nonzero value.
|
||||
* Output type is a `SparseMatrix`
|
||||
* `x()` operation invoked NZ times (number of nonzero values in A only + number of nonzero values in B only + number of nonzero values in A and B)
|
||||
|
||||
**Cij = x(Aij, Bij); Aij != 0 || Bij != 0**
|
||||
**Cij = 0; otherwise**
|
||||
|
||||
- **Algorithm 6 `x(sparse, sparse)`**
|
||||
* Algorithm should iterate on the nonzero values of matrices A and B and call `x(Aij, Bij)` when both matrices contain value at (i,j).
|
||||
* Output type is a `SparseMatrix`
|
||||
* `x()` operation invoked NZ times (number of nonzero items at the same (i,j) for both matrices)
|
||||
|
||||
**Cij = x(Aij, Bij); Aij != 0 && Bij != 0**
|
||||
**Cij = 0; otherwise**
|
||||
|
||||
- **Algorithm 7 `x(sparse, sparse)`**
|
||||
* Algorithm should iterate on all values of matrices A and B and call `x(Aij, Bij)`
|
||||
* Output type is a `DenseMatrix`
|
||||
* `x()` operation invoked MxN times
|
||||
|
||||
**Cij = x(Aij, Bij);**
|
||||
|
||||
- **Algorithm 8 `x(sparse, sparse)`**
|
||||
* Algorithm should iterate on the nonzero values of matrices A and B and call `x(Aij, Bij)` when both matrices contain value at (i,j). Use the value from Aij when Bij is zero.
|
||||
* Output type is a `SparseMatrix`
|
||||
* `x()` operation invoked NZ times (number of nonzero items at the same (i,j) for both matrices)
|
||||
|
||||
**Cij = x(Aij, Bij); Aij != 0 && Bij != 0**
|
||||
**Cij = Aij; Aij != 0**
|
||||
**Cij = 0; otherwise**
|
||||
|
||||
- **Algorithm 9 `x(sparse, sparse)`**
|
||||
* Algorithm should iterate on the nonzero values of matrices A `x(Aij, Bij)`.
|
||||
* Output type is a `SparseMatrix`
|
||||
* `x()` operation invoked NZA times (number of nonzero items in A)
|
||||
|
||||
**Cij = x(Aij, Bij); Aij != 0**
|
||||
**Cij = 0; otherwise**
|
||||
|
||||
Algorithms for the implementation of element wise operations between a Sparse and Scalar Value:
|
||||
|
||||
- **Algorithm 10 `x(sparse, scalar)`**
|
||||
* Algorithm should iterate on the nonzero values of matrix A and call `x(Aij, N)`.
|
||||
* Output type is a `DenseMatrix`
|
||||
* `x()` operation invoked NZ times (number of nonzero items)
|
||||
|
||||
**Cij = x(Aij, N); Aij != 0**
|
||||
**Cij = N; otherwise**
|
||||
|
||||
- **Algorithm 11 `x(sparse, scalar)`**
|
||||
* Algorithm should iterate on the nonzero values of matrix A and call `x(Aij, N)`.
|
||||
* Output type is a `SparseMatrix`
|
||||
* `x()` operation invoked NZ times (number of nonzero items)
|
||||
|
||||
**Cij = x(Aij, N); Aij != 0**
|
||||
**Cij = 0; otherwise**
|
||||
|
||||
- **Algorithm 12 `x(sparse, scalar)`**
|
||||
* Algorithm should iterate on the zero and nonzero values of matrix A and call `x(Aij, N)`.
|
||||
* Output type is a `DenseMatrix`
|
||||
* `x()` operation invoked MxN times.
|
||||
|
||||
**Cij = x(Aij, N); Aij != 0**
|
||||
**Cij = x(0, N); otherwise**
|
||||
|
||||
Algorithms for the implementation of element wise operations between a Dense and Dense matrices:
|
||||
|
||||
- **Algorithm 13 `x(dense, dense)`
|
||||
* Algorithm should iterate on the values of matrix A and B for all dimensions and call `x(Aij..z,Bij..z)`
|
||||
* Output type is a `DenseMatrix`
|
||||
* `x()` operation invoked Z times, where Z is the number of elements in the matrix last dimension. For two dimensional matrix Z = MxN
|
||||
|
||||
**Cij..z = x(Aij..z, Bij..z)**
|
||||
|
||||
Algorithms for the implementation of element wise operations between a Dense Matrix and a Scalar Value.
|
||||
|
||||
- **Algorithm 14 `x(dense, scalar)`**
|
||||
* Algorithm should iterate on the values of matrix A for all dimensions and call `x(Aij..z, N)`
|
||||
* Output type is a `DenseMatrix`
|
||||
* `x()` operation invoked Z times, where Z is the number of elements in the matrix last dimension.
|
||||
|
||||
**Cij..z = x(Aij..z, N)**
|
||||
Loading…
x
Reference in New Issue
Block a user