diff --git a/lib/type/matrix/util/README.md b/lib/type/matrix/util/README.md index e69de29bb..f409f0632 100644 --- a/lib/type/matrix/util/README.md +++ b/lib/type/matrix/util/README.md @@ -0,0 +1,120 @@ +Algorithms for the implementation of element wise operations between a Dense and Sparse matrices: + +- **Algorithm 1 `x(dense, sparse)`** + * Algorithm should clone `DenseMatrix` and call the `x(d(i,j), s(i,j))` operation for the items in the Dense and Sparse matrices (iterating on the Sparse matrix nonzero items), updating the cloned matrix. + * Output type is a `DenseMatrix` (the cloned matrix) + * `x()` operation invoked NZ times (number of nonzero items in `SparseMatrix`) + + **Cij = x(Dij, Sij); Sij != 0** + **Cij = Dij ; otherwise** + +_ **Algorithm 2 `x(dense, sparse)`** + * Algorithm should iterate `SparseMatrix` (nonzero items) and call the `x(d(i,j),s(i,j))` operation for the items in the Sparse and Dense matrices (since zero & X == zero) + * Output type is a `SparseMatrix` since the number of nonzero items will be less or equal the number of nonzero elements in the Sparse Matrix. + * `x()` operation invoked NZ times (number of nonzero items in `SparseMatrix`) + + **Cij = x(Dij, Sij); Sij != 0** + **Cij = 0 ; otherwise** + +- **Algorithm 3 `x(dense, sparse)`** + * Algorithm should iterate `SparseMatrix` (nonzero and zero items) and call the `x(s(i,j),d(i,j))` operation for the items in the Dense and Sparse matrices + * Output type is a `DenseMatrix` + * `x()` operation invoked M*N times + + **Cij = x(Dij, Sij); Sij != 0** + **Cij = x(Dij, 0); otherwise** + +- **Algorithm 4 `x(sparse, sparse)`** + * Algorithm should iterate on the nonzero values of matrices A and B and call `x(Aij, Bij)` when both matrices contain value at (i,j) + * Output type is a `SparseMatrix` + * `x()` operation invoked NZ times (number of nonzero items at the same (i,j) for both matrices) + + **Cij = x(Aij, Bij); Aij != 0 && Bij != 0** + **Cij = Aij; Aij != 0** + **Cij = Bij; Bij != 0** + +Algorithms for the implementation of element wise operations between a Sparse matrices: + +- **Algorithm 5 `x(sparse, sparse)`** + * Algorithm should iterate on the nonzero values of matrices A and B and call `x(Aij, Bij)` for every nonzero value. + * Output type is a `SparseMatrix` + * `x()` operation invoked NZ times (number of nonzero values in A only + number of nonzero values in B only + number of nonzero values in A and B) + + **Cij = x(Aij, Bij); Aij != 0 || Bij != 0** + **Cij = 0; otherwise** + +- **Algorithm 6 `x(sparse, sparse)`** + * Algorithm should iterate on the nonzero values of matrices A and B and call `x(Aij, Bij)` when both matrices contain value at (i,j). + * Output type is a `SparseMatrix` + * `x()` operation invoked NZ times (number of nonzero items at the same (i,j) for both matrices) + + **Cij = x(Aij, Bij); Aij != 0 && Bij != 0** + **Cij = 0; otherwise** + +- **Algorithm 7 `x(sparse, sparse)`** + * Algorithm should iterate on all values of matrices A and B and call `x(Aij, Bij)` + * Output type is a `DenseMatrix` + * `x()` operation invoked MxN times + + **Cij = x(Aij, Bij);** + +- **Algorithm 8 `x(sparse, sparse)`** + * Algorithm should iterate on the nonzero values of matrices A and B and call `x(Aij, Bij)` when both matrices contain value at (i,j). Use the value from Aij when Bij is zero. + * Output type is a `SparseMatrix` + * `x()` operation invoked NZ times (number of nonzero items at the same (i,j) for both matrices) + + **Cij = x(Aij, Bij); Aij != 0 && Bij != 0** + **Cij = Aij; Aij != 0** + **Cij = 0; otherwise** + +- **Algorithm 9 `x(sparse, sparse)`** + * Algorithm should iterate on the nonzero values of matrices A `x(Aij, Bij)`. + * Output type is a `SparseMatrix` + * `x()` operation invoked NZA times (number of nonzero items in A) + + **Cij = x(Aij, Bij); Aij != 0** + **Cij = 0; otherwise** + + Algorithms for the implementation of element wise operations between a Sparse and Scalar Value: + +- **Algorithm 10 `x(sparse, scalar)`** + * Algorithm should iterate on the nonzero values of matrix A and call `x(Aij, N)`. + * Output type is a `DenseMatrix` + * `x()` operation invoked NZ times (number of nonzero items) + + **Cij = x(Aij, N); Aij != 0** + **Cij = N; otherwise** + +- **Algorithm 11 `x(sparse, scalar)`** + * Algorithm should iterate on the nonzero values of matrix A and call `x(Aij, N)`. + * Output type is a `SparseMatrix` + * `x()` operation invoked NZ times (number of nonzero items) + + **Cij = x(Aij, N); Aij != 0** + **Cij = 0; otherwise** + +- **Algorithm 12 `x(sparse, scalar)`** + * Algorithm should iterate on the zero and nonzero values of matrix A and call `x(Aij, N)`. + * Output type is a `DenseMatrix` + * `x()` operation invoked MxN times. + + **Cij = x(Aij, N); Aij != 0** + **Cij = x(0, N); otherwise** + + Algorithms for the implementation of element wise operations between a Dense and Dense matrices: + +- **Algorithm 13 `x(dense, dense)` + * Algorithm should iterate on the values of matrix A and B for all dimensions and call `x(Aij..z,Bij..z)` + * Output type is a `DenseMatrix` + * `x()` operation invoked Z times, where Z is the number of elements in the matrix last dimension. For two dimensional matrix Z = MxN + + **Cij..z = x(Aij..z, Bij..z)** + + Algorithms for the implementation of element wise operations between a Dense Matrix and a Scalar Value. + +- **Algorithm 14 `x(dense, scalar)`** + * Algorithm should iterate on the values of matrix A for all dimensions and call `x(Aij..z, N)` + * Output type is a `DenseMatrix` + * `x()` operation invoked Z times, where Z is the number of elements in the matrix last dimension. + + **Cij..z = x(Aij..z, N)**