mirror of
https://github.com/mapnik/mapnik.git
synced 2025-12-08 20:13:09 +00:00
227 lines
6.7 KiB
C++
227 lines
6.7 KiB
C++
/*****************************************************************************
|
|
*
|
|
* This file is part of Mapnik (c++ mapping toolkit)
|
|
*
|
|
* Copyright (C) 2017 Artem Pavlenko
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#include <mapnik/geometry/interior.hpp>
|
|
#include <mapnik/geometry/envelope.hpp>
|
|
#include <mapnik/geometry/box2d.hpp>
|
|
#include <mapbox/geometry/point_arithmetic.hpp>
|
|
#include <mapnik/geometry/centroid.hpp>
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <queue>
|
|
|
|
namespace mapnik { namespace geometry {
|
|
|
|
// Interior algorithm is realized as a modification of Polylabel algorithm
|
|
// from https://github.com/mapbox/polylabel.
|
|
// The modification aims to improve visual output by prefering
|
|
// placements closer to centroid.
|
|
|
|
namespace detail {
|
|
|
|
// get squared distance from a point to a segment
|
|
template <class T>
|
|
T segment_dist_sq(const point<T>& p,
|
|
const point<T>& a,
|
|
const point<T>& b)
|
|
{
|
|
auto x = a.x;
|
|
auto y = a.y;
|
|
auto dx = b.x - x;
|
|
auto dy = b.y - y;
|
|
|
|
if (dx != 0 || dy != 0) {
|
|
|
|
auto t = ((p.x - x) * dx + (p.y - y) * dy) / (dx * dx + dy * dy);
|
|
|
|
if (t > 1) {
|
|
x = b.x;
|
|
y = b.y;
|
|
|
|
} else if (t > 0) {
|
|
x += dx * t;
|
|
y += dy * t;
|
|
}
|
|
}
|
|
|
|
dx = p.x - x;
|
|
dy = p.y - y;
|
|
|
|
return dx * dx + dy * dy;
|
|
}
|
|
|
|
// signed distance from point to polygon outline (negative if point is outside)
|
|
template <class T>
|
|
auto point_to_polygon_dist(const point<T>& point, const polygon<T>& polygon)
|
|
{
|
|
bool inside = false;
|
|
auto min_dist_sq = std::numeric_limits<double>::infinity();
|
|
|
|
for (const auto& ring : polygon)
|
|
{
|
|
for (std::size_t i = 0, len = ring.size(), j = len - 1; i < len; j = i++)
|
|
{
|
|
const auto& a = ring[i];
|
|
const auto& b = ring[j];
|
|
|
|
if ((a.y > point.y) != (b.y > point.y) &&
|
|
(point.x < (b.x - a.x) * (point.y - a.y) / (b.y - a.y) + a.x)) inside = !inside;
|
|
|
|
min_dist_sq = std::min(min_dist_sq, segment_dist_sq(point, a, b));
|
|
}
|
|
}
|
|
|
|
return (inside ? 1 : -1) * std::sqrt(min_dist_sq);
|
|
}
|
|
|
|
template <class T>
|
|
struct fitness_functor
|
|
{
|
|
fitness_functor(point<T> const& centroid, point<T> const& polygon_size)
|
|
: centroid(centroid),
|
|
max_size(std::max(polygon_size.x, polygon_size.y))
|
|
{}
|
|
|
|
T operator()(const point<T>& cell_center, T distance_polygon) const
|
|
{
|
|
if (distance_polygon <= 0)
|
|
{
|
|
return distance_polygon;
|
|
}
|
|
point<T> d = cell_center - centroid;
|
|
double distance_centroid = std::sqrt(d.x * d.x + d.y * d.y);
|
|
return distance_polygon * (1 - distance_centroid / max_size);
|
|
}
|
|
|
|
point<T> centroid;
|
|
T max_size;
|
|
};
|
|
|
|
template <class T>
|
|
struct cell
|
|
{
|
|
template <class FitnessFunc>
|
|
cell(const point<T>& c_, T h_,
|
|
const polygon<T>& polygon,
|
|
const FitnessFunc& ff)
|
|
: c(c_),
|
|
h(h_),
|
|
d(point_to_polygon_dist(c, polygon)),
|
|
fitness(ff(c, d)),
|
|
max_fitness(ff(c, d + h * std::sqrt(2)))
|
|
{}
|
|
|
|
point<T> c; // cell center
|
|
T h; // half the cell size
|
|
T d; // distance from cell center to polygon
|
|
T fitness; // fitness of the cell center
|
|
T max_fitness; // a "potential" of the cell calculated from max distance to polygon within the cell
|
|
};
|
|
|
|
template <class T>
|
|
point<T> polylabel(const polygon<T>& polygon, T precision = 1)
|
|
{
|
|
// find the bounding box of the outer ring
|
|
const box2d<T> bbox = envelope(polygon.at(0));
|
|
const point<T> size { bbox.width(), bbox.height() };
|
|
|
|
const T cell_size = std::min(size.x, size.y);
|
|
T h = cell_size / 2;
|
|
|
|
// a priority queue of cells in order of their "potential" (max distance to polygon)
|
|
auto compare_func = [] (const cell<T>& a, const cell<T>& b)
|
|
{
|
|
return a.max_fitness < b.max_fitness;
|
|
};
|
|
using Queue = std::priority_queue<cell<T>, std::vector<cell<T>>, decltype(compare_func)>;
|
|
Queue queue(compare_func);
|
|
|
|
if (cell_size == 0)
|
|
{
|
|
return { bbox.minx(), bbox.miny() };
|
|
}
|
|
|
|
point<T> centroid;
|
|
if (!mapnik::geometry::centroid(polygon, centroid))
|
|
{
|
|
auto center = bbox.center();
|
|
return { center.x, center.y };
|
|
}
|
|
|
|
fitness_functor<T> fitness_func(centroid, size);
|
|
|
|
// cover polygon with initial cells
|
|
for (T x = bbox.minx(); x < bbox.maxx(); x += cell_size)
|
|
{
|
|
for (T y = bbox.miny(); y < bbox.maxy(); y += cell_size)
|
|
{
|
|
queue.push(cell<T>({x + h, y + h}, h, polygon, fitness_func));
|
|
}
|
|
}
|
|
|
|
// take centroid as the first best guess
|
|
auto best_cell = cell<T>(centroid, 0, polygon, fitness_func);
|
|
|
|
while (!queue.empty())
|
|
{
|
|
// pick the most promising cell from the queue
|
|
auto current_cell = queue.top();
|
|
queue.pop();
|
|
|
|
// update the best cell if we found a better one
|
|
if (current_cell.fitness > best_cell.fitness)
|
|
{
|
|
best_cell = current_cell;
|
|
}
|
|
|
|
// do not drill down further if there's no chance of a better solution
|
|
if (current_cell.max_fitness - best_cell.fitness <= precision) continue;
|
|
|
|
// split the cell into four cells
|
|
h = current_cell.h / 2;
|
|
queue.push(cell<T>({current_cell.c.x - h, current_cell.c.y - h}, h, polygon, fitness_func));
|
|
queue.push(cell<T>({current_cell.c.x + h, current_cell.c.y - h}, h, polygon, fitness_func));
|
|
queue.push(cell<T>({current_cell.c.x - h, current_cell.c.y + h}, h, polygon, fitness_func));
|
|
queue.push(cell<T>({current_cell.c.x + h, current_cell.c.y + h}, h, polygon, fitness_func));
|
|
}
|
|
|
|
return best_cell.c;
|
|
}
|
|
|
|
} // namespace detail
|
|
|
|
template <class T>
|
|
point<T> interior(polygon<T> const& polygon, double scale_factor)
|
|
{
|
|
// This precision has been chosen to work well in the map (viewport) coordinates.
|
|
double precision = 10.0 * scale_factor;
|
|
return detail::polylabel(polygon, precision);
|
|
}
|
|
|
|
template
|
|
point<double> interior(polygon<double> const& polygon, double scale_factor);
|
|
|
|
} }
|
|
|