/***************************************************************************** * * This file is part of Mapnik (c++ mapping toolkit) * * Copyright (C) 2017 Artem Pavlenko * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * *****************************************************************************/ #include #include #include #include #include #include #include #include #include namespace mapnik { namespace geometry { // Interior algorithm is realized as a modification of Polylabel algorithm // from https://github.com/mapbox/polylabel. // The modification aims to improve visual output by prefering // placements closer to centroid. namespace detail { // get squared distance from a point to a segment template T segment_dist_sq(const point& p, const point& a, const point& b) { auto x = a.x; auto y = a.y; auto dx = b.x - x; auto dy = b.y - y; if (dx != 0 || dy != 0) { auto t = ((p.x - x) * dx + (p.y - y) * dy) / (dx * dx + dy * dy); if (t > 1) { x = b.x; y = b.y; } else if (t > 0) { x += dx * t; y += dy * t; } } dx = p.x - x; dy = p.y - y; return dx * dx + dy * dy; } // signed distance from point to polygon outline (negative if point is outside) template auto point_to_polygon_dist(const point& point, const polygon& polygon) { bool inside = false; auto min_dist_sq = std::numeric_limits::infinity(); for (const auto& ring : polygon) { for (std::size_t i = 0, len = ring.size(), j = len - 1; i < len; j = i++) { const auto& a = ring[i]; const auto& b = ring[j]; if ((a.y > point.y) != (b.y > point.y) && (point.x < (b.x - a.x) * (point.y - a.y) / (b.y - a.y) + a.x)) inside = !inside; min_dist_sq = std::min(min_dist_sq, segment_dist_sq(point, a, b)); } } return (inside ? 1 : -1) * std::sqrt(min_dist_sq); } template struct fitness_functor { fitness_functor(point const& centroid, point const& polygon_size) : centroid(centroid), max_size(std::max(polygon_size.x, polygon_size.y)) {} T operator()(const point& cell_center, T distance_polygon) const { if (distance_polygon <= 0) { return distance_polygon; } point d = cell_center - centroid; double distance_centroid = std::sqrt(d.x * d.x + d.y * d.y); return distance_polygon * (1 - distance_centroid / max_size); } point centroid; T max_size; }; template struct cell { template cell(const point& c_, T h_, const polygon& polygon, const FitnessFunc& ff) : c(c_), h(h_), d(point_to_polygon_dist(c, polygon)), fitness(ff(c, d)), max_fitness(ff(c, d + h * std::sqrt(2))) {} point c; // cell center T h; // half the cell size T d; // distance from cell center to polygon T fitness; // fitness of the cell center T max_fitness; // a "potential" of the cell calculated from max distance to polygon within the cell }; template point polylabel(const polygon& polygon, T precision = 1) { // find the bounding box of the outer ring const box2d bbox = envelope(polygon.at(0)); const point size { bbox.width(), bbox.height() }; const T cell_size = std::min(size.x, size.y); T h = cell_size / 2; // a priority queue of cells in order of their "potential" (max distance to polygon) auto compare_func = [] (const cell& a, const cell& b) { return a.max_fitness < b.max_fitness; }; using Queue = std::priority_queue, std::vector>, decltype(compare_func)>; Queue queue(compare_func); if (cell_size == 0) { return { bbox.minx(), bbox.miny() }; } point centroid; if (!mapnik::geometry::centroid(polygon, centroid)) { auto center = bbox.center(); return { center.x, center.y }; } fitness_functor fitness_func(centroid, size); // cover polygon with initial cells for (T x = bbox.minx(); x < bbox.maxx(); x += cell_size) { for (T y = bbox.miny(); y < bbox.maxy(); y += cell_size) { queue.push(cell({x + h, y + h}, h, polygon, fitness_func)); } } // take centroid as the first best guess auto best_cell = cell(centroid, 0, polygon, fitness_func); while (!queue.empty()) { // pick the most promising cell from the queue auto current_cell = queue.top(); queue.pop(); // update the best cell if we found a better one if (current_cell.fitness > best_cell.fitness) { best_cell = current_cell; } // do not drill down further if there's no chance of a better solution if (current_cell.max_fitness - best_cell.fitness <= precision) continue; // split the cell into four cells h = current_cell.h / 2; queue.push(cell({current_cell.c.x - h, current_cell.c.y - h}, h, polygon, fitness_func)); queue.push(cell({current_cell.c.x + h, current_cell.c.y - h}, h, polygon, fitness_func)); queue.push(cell({current_cell.c.x - h, current_cell.c.y + h}, h, polygon, fitness_func)); queue.push(cell({current_cell.c.x + h, current_cell.c.y + h}, h, polygon, fitness_func)); } return best_cell.c; } } // namespace detail template point interior(polygon const& polygon, double scale_factor) { // This precision has been chosen to work well in the map (viewport) coordinates. double precision = 10.0 * scale_factor; return detail::polylabel(polygon, precision); } template point interior(polygon const& polygon, double scale_factor); } }