mirror of
https://github.com/jerryscript-project/jerryscript.git
synced 2025-12-15 16:29:21 +00:00
989 lines
27 KiB
C++
989 lines
27 KiB
C++
/* Copyright 2014-2015 Samsung Electronics Co., Ltd.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "ecma-alloc.h"
|
|
#include "ecma-builtins.h"
|
|
#include "ecma-conversion.h"
|
|
#include "ecma-exceptions.h"
|
|
#include "ecma-gc.h"
|
|
#include "ecma-globals.h"
|
|
#include "ecma-helpers.h"
|
|
#include "ecma-number-arithmetic.h"
|
|
#include "ecma-objects.h"
|
|
#include "ecma-objects-general.h"
|
|
#include "ecma-try-catch-macro.h"
|
|
#include "jrt.h"
|
|
|
|
#ifndef CONFIG_ECMA_COMPACT_PROFILE_DISABLE_MATH_BUILTIN
|
|
|
|
#define ECMA_BUILTINS_INTERNAL
|
|
#include "ecma-builtins-internal.h"
|
|
|
|
#define BUILTIN_INC_HEADER_NAME "ecma-builtin-math.inc.h"
|
|
#define BUILTIN_UNDERSCORED_ID math
|
|
#include "ecma-builtin-internal-routines-template.inc.h"
|
|
|
|
/** \addtogroup ecma ECMA
|
|
* @{
|
|
*
|
|
* \addtogroup ecmabuiltins
|
|
* @{
|
|
*
|
|
* \addtogroup object ECMA Object object built-in
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* The Math object's 'abs' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.8.2.1
|
|
*
|
|
* @return completion value
|
|
* Returned value must be freed with ecma_free_completion_value.
|
|
*/
|
|
static ecma_completion_value_t
|
|
ecma_builtin_math_object_abs (const ecma_value_t& this_arg __attr_unused___, /**< 'this' argument */
|
|
const ecma_value_t& arg) /**< routine's argument */
|
|
{
|
|
ecma_completion_value_t ret_value = ecma_make_empty_completion_value ();
|
|
|
|
ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value);
|
|
|
|
ecma_number_t *num_p = ecma_alloc_number ();
|
|
|
|
if (ecma_number_is_nan (arg_num))
|
|
{
|
|
*num_p = arg_num;
|
|
}
|
|
else
|
|
{
|
|
*num_p = ecma_number_abs (arg_num);
|
|
}
|
|
|
|
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
|
|
|
|
ECMA_OP_TO_NUMBER_FINALIZE (arg_num);
|
|
|
|
return ret_value;
|
|
} /* ecma_builtin_math_object_abs */
|
|
|
|
/**
|
|
* The Math object's 'acos' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.8.2.2
|
|
*
|
|
* @return completion value
|
|
* Returned value must be freed with ecma_free_completion_value.
|
|
*/
|
|
static ecma_completion_value_t
|
|
ecma_builtin_math_object_acos (const ecma_value_t& this_arg, /**< 'this' argument */
|
|
const ecma_value_t& arg) /**< routine's argument */
|
|
{
|
|
ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg);
|
|
} /* ecma_builtin_math_object_acos */
|
|
|
|
/**
|
|
* The Math object's 'asin' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.8.2.3
|
|
*
|
|
* @return completion value
|
|
* Returned value must be freed with ecma_free_completion_value.
|
|
*/
|
|
static ecma_completion_value_t
|
|
ecma_builtin_math_object_asin (const ecma_value_t& this_arg, /**< 'this' argument */
|
|
const ecma_value_t& arg) /**< routine's argument */
|
|
{
|
|
ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg);
|
|
} /* ecma_builtin_math_object_asin */
|
|
|
|
/**
|
|
* The Math object's 'atan' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.8.2.4
|
|
*
|
|
* @return completion value
|
|
* Returned value must be freed with ecma_free_completion_value.
|
|
*/
|
|
static ecma_completion_value_t
|
|
ecma_builtin_math_object_atan (const ecma_value_t& this_arg, /**< 'this' argument */
|
|
const ecma_value_t& arg) /**< routine's argument */
|
|
{
|
|
ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg);
|
|
} /* ecma_builtin_math_object_atan */
|
|
|
|
/**
|
|
* The Math object's 'atan2' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.8.2.5
|
|
*
|
|
* @return completion value
|
|
* Returned value must be freed with ecma_free_completion_value.
|
|
*/
|
|
static ecma_completion_value_t
|
|
ecma_builtin_math_object_atan2 (const ecma_value_t& this_arg, /**< 'this' argument */
|
|
const ecma_value_t& arg1, /**< first routine's argument */
|
|
const ecma_value_t& arg2) /**< second routine's argument */
|
|
{
|
|
ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg1, arg2);
|
|
} /* ecma_builtin_math_object_atan2 */
|
|
|
|
/**
|
|
* The Math object's 'ceil' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.8.2.6
|
|
*
|
|
* @return completion value
|
|
* Returned value must be freed with ecma_free_completion_value.
|
|
*/
|
|
static ecma_completion_value_t
|
|
ecma_builtin_math_object_ceil (const ecma_value_t& this_arg, /**< 'this' argument */
|
|
const ecma_value_t& arg) /**< routine's argument */
|
|
{
|
|
ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg);
|
|
} /* ecma_builtin_math_object_ceil */
|
|
|
|
/**
|
|
* The Math object's 'cos' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.8.2.7
|
|
*
|
|
* @return completion value
|
|
* Returned value must be freed with ecma_free_completion_value.
|
|
*/
|
|
static ecma_completion_value_t
|
|
ecma_builtin_math_object_cos (const ecma_value_t& this_arg __attr_unused___, /**< 'this' argument */
|
|
const ecma_value_t& arg) /**< routine's argument */
|
|
{
|
|
ecma_completion_value_t ret_value = ecma_make_empty_completion_value ();
|
|
|
|
ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value);
|
|
|
|
ecma_number_t *num_p = ecma_alloc_number ();
|
|
|
|
if (ecma_number_is_nan (arg_num)
|
|
|| ecma_number_is_infinity (arg_num))
|
|
{
|
|
*num_p = ecma_number_make_nan ();
|
|
}
|
|
else if (ecma_number_is_zero (arg_num))
|
|
{
|
|
*num_p = ECMA_NUMBER_ONE;
|
|
}
|
|
else
|
|
{
|
|
/* Taylor series of cos (x) around x = 0 is 1 - x^2/2! + x^4/4! - x^6/6! + ... */
|
|
|
|
ecma_number_t x = ecma_op_number_remainder (arg_num, 2 * ECMA_NUMBER_PI);
|
|
ecma_number_t neg_sqr_x = ecma_number_negate (ecma_number_multiply (x, x));
|
|
|
|
ecma_number_t sum = ECMA_NUMBER_ZERO;
|
|
ecma_number_t next_addendum = ECMA_NUMBER_ONE;
|
|
ecma_number_t next_factorial_factor = ECMA_NUMBER_ZERO;
|
|
|
|
ecma_number_t diff = ecma_number_make_infinity (false);
|
|
|
|
while ((ecma_number_is_zero (sum) && !ecma_number_is_zero (diff))
|
|
|| (!ecma_number_is_zero (sum)
|
|
&& ecma_number_abs (ecma_number_divide (diff, sum)) > ecma_number_relative_eps))
|
|
{
|
|
ecma_number_t next_sum = ecma_number_add (sum, next_addendum);
|
|
|
|
next_addendum = ecma_number_multiply (next_addendum, neg_sqr_x);
|
|
next_factorial_factor = ecma_number_add (next_factorial_factor, ECMA_NUMBER_ONE);
|
|
next_addendum = ecma_number_divide (next_addendum, next_factorial_factor);
|
|
next_factorial_factor = ecma_number_add (next_factorial_factor, ECMA_NUMBER_ONE);
|
|
next_addendum = ecma_number_divide (next_addendum, next_factorial_factor);
|
|
|
|
diff = ecma_number_abs (ecma_number_substract (sum, next_sum));
|
|
|
|
sum = next_sum;
|
|
}
|
|
|
|
*num_p = sum;
|
|
}
|
|
|
|
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
|
|
|
|
ECMA_OP_TO_NUMBER_FINALIZE (arg_num);
|
|
|
|
return ret_value;
|
|
} /* ecma_builtin_math_object_cos */
|
|
|
|
/**
|
|
* The Math object's 'exp' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.8.2.8
|
|
*
|
|
* @return completion value
|
|
* Returned value must be freed with ecma_free_completion_value.
|
|
*/
|
|
static ecma_completion_value_t
|
|
ecma_builtin_math_object_exp (const ecma_value_t& this_arg __attr_unused___, /**< 'this' argument */
|
|
const ecma_value_t& arg) /**< routine's argument */
|
|
{
|
|
ecma_completion_value_t ret_value = ecma_make_empty_completion_value ();
|
|
|
|
ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value);
|
|
|
|
ecma_number_t *num_p = ecma_alloc_number ();
|
|
|
|
if (ecma_number_is_nan (arg_num))
|
|
{
|
|
*num_p = arg_num;
|
|
}
|
|
else if (ecma_number_is_zero (arg_num))
|
|
{
|
|
*num_p = ECMA_NUMBER_ONE;
|
|
}
|
|
else if (ecma_number_is_infinity (arg_num))
|
|
{
|
|
if (ecma_number_is_negative (arg_num))
|
|
{
|
|
*num_p = ECMA_NUMBER_ZERO;
|
|
}
|
|
else
|
|
{
|
|
*num_p = arg_num;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
*num_p = ecma_number_exp (arg_num);
|
|
}
|
|
|
|
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
|
|
|
|
ECMA_OP_TO_NUMBER_FINALIZE (arg_num);
|
|
|
|
return ret_value;
|
|
} /* ecma_builtin_math_object_exp */
|
|
|
|
/**
|
|
* The Math object's 'floor' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.8.2.9
|
|
*
|
|
* @return completion value
|
|
* Returned value must be freed with ecma_free_completion_value.
|
|
*/
|
|
static ecma_completion_value_t
|
|
ecma_builtin_math_object_floor (const ecma_value_t& this_arg, /**< 'this' argument */
|
|
const ecma_value_t& arg) /**< routine's argument */
|
|
{
|
|
ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg);
|
|
} /* ecma_builtin_math_object_floor */
|
|
|
|
/**
|
|
* The Math object's 'log' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.8.2.10
|
|
*
|
|
* @return completion value
|
|
* Returned value must be freed with ecma_free_completion_value.
|
|
*/
|
|
static ecma_completion_value_t
|
|
ecma_builtin_math_object_log (const ecma_value_t& this_arg __attr_unused___, /**< 'this' argument */
|
|
const ecma_value_t& arg) /**< routine's argument */
|
|
{
|
|
ecma_completion_value_t ret_value = ecma_make_empty_completion_value ();
|
|
|
|
ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value);
|
|
|
|
ecma_number_t *num_p = ecma_alloc_number ();
|
|
|
|
if (ecma_number_is_nan (arg_num))
|
|
{
|
|
*num_p = arg_num;
|
|
}
|
|
else if (ecma_number_is_zero (arg_num))
|
|
{
|
|
*num_p = ecma_number_make_infinity (true);
|
|
}
|
|
else if (ecma_number_is_negative (arg_num))
|
|
{
|
|
*num_p = ecma_number_make_nan ();
|
|
}
|
|
else if (ecma_number_is_infinity (arg_num))
|
|
{
|
|
*num_p = arg_num;
|
|
}
|
|
else
|
|
{
|
|
*num_p = ecma_number_ln (arg_num);
|
|
}
|
|
|
|
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
|
|
|
|
ECMA_OP_TO_NUMBER_FINALIZE (arg_num);
|
|
|
|
return ret_value;
|
|
} /* ecma_builtin_math_object_log */
|
|
|
|
/**
|
|
* The Math object's 'max' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.8.2.11
|
|
*
|
|
* @return completion value
|
|
* Returned value must be freed with ecma_free_completion_value.
|
|
*/
|
|
static ecma_completion_value_t
|
|
ecma_builtin_math_object_max (const ecma_value_t& this_arg __attr_unused___, /**< 'this' argument */
|
|
const ecma_value_t args[], /**< arguments list */
|
|
ecma_length_t args_number) /**< number of arguments */
|
|
{
|
|
ecma_completion_value_t ret_value = ecma_make_empty_completion_value ();
|
|
|
|
ecma_number_t ret_num = ecma_number_make_infinity (true);
|
|
|
|
bool is_just_convert = false;
|
|
|
|
for (ecma_length_t arg_index = 0;
|
|
arg_index < args_number;
|
|
arg_index++)
|
|
{
|
|
ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, args[arg_index], ret_value);
|
|
|
|
if (!is_just_convert)
|
|
{
|
|
if (unlikely (ecma_number_is_nan (arg_num)))
|
|
{
|
|
ret_num = arg_num;
|
|
is_just_convert = true;
|
|
}
|
|
else if (ecma_number_is_zero (arg_num) /* both numbers are zeroes */
|
|
&& ecma_number_is_zero (ret_num))
|
|
{
|
|
if (!ecma_number_is_negative (arg_num))
|
|
{
|
|
ret_num = arg_num;
|
|
}
|
|
}
|
|
else if (ecma_number_is_infinity (arg_num))
|
|
{
|
|
if (!ecma_number_is_negative (arg_num))
|
|
{
|
|
ret_num = arg_num;
|
|
is_just_convert = true;
|
|
}
|
|
}
|
|
else if (ecma_number_is_infinity (ret_num)) /* ret_num is negative infinity */
|
|
{
|
|
JERRY_ASSERT (ecma_number_is_negative (ret_num));
|
|
|
|
ret_num = arg_num;
|
|
}
|
|
else
|
|
{
|
|
JERRY_ASSERT (!ecma_number_is_nan (arg_num)
|
|
&& !ecma_number_is_infinity (arg_num));
|
|
JERRY_ASSERT (!ecma_number_is_nan (ret_num)
|
|
&& !ecma_number_is_infinity (ret_num));
|
|
|
|
if (arg_num > ret_num)
|
|
{
|
|
ret_num = arg_num;
|
|
}
|
|
}
|
|
}
|
|
|
|
ECMA_OP_TO_NUMBER_FINALIZE (arg_num);
|
|
|
|
if (ecma_is_completion_value_throw (ret_value))
|
|
{
|
|
return ret_value;
|
|
}
|
|
|
|
JERRY_ASSERT (ecma_is_completion_value_empty (ret_value));
|
|
}
|
|
|
|
JERRY_ASSERT (ecma_is_completion_value_empty (ret_value));
|
|
|
|
ecma_number_t *num_p = ecma_alloc_number ();
|
|
*num_p = ret_num;
|
|
|
|
return ecma_make_normal_completion_value (ecma_make_number_value (num_p));
|
|
} /* ecma_builtin_math_object_max */
|
|
|
|
/**
|
|
* The Math object's 'min' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.8.2.12
|
|
*
|
|
* @return completion value
|
|
* Returned value must be freed with ecma_free_completion_value.
|
|
*/
|
|
static ecma_completion_value_t
|
|
ecma_builtin_math_object_min (const ecma_value_t& this_arg __attr_unused___, /**< 'this' argument */
|
|
const ecma_value_t args[], /**< arguments list */
|
|
ecma_length_t args_number) /**< number of arguments */
|
|
{
|
|
ecma_completion_value_t ret_value = ecma_make_empty_completion_value ();
|
|
|
|
ecma_number_t ret_num = ecma_number_make_infinity (false);
|
|
|
|
bool is_just_convert = false;
|
|
|
|
for (ecma_length_t arg_index = 0;
|
|
arg_index < args_number;
|
|
arg_index++)
|
|
{
|
|
ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, args[arg_index], ret_value);
|
|
|
|
if (!is_just_convert)
|
|
{
|
|
if (unlikely (ecma_number_is_nan (arg_num)))
|
|
{
|
|
ret_num = arg_num;
|
|
is_just_convert = true;
|
|
}
|
|
else if (ecma_number_is_zero (arg_num) /* both numbers are zeroes */
|
|
&& ecma_number_is_zero (ret_num))
|
|
{
|
|
if (ecma_number_is_negative (arg_num))
|
|
{
|
|
ret_num = arg_num;
|
|
}
|
|
}
|
|
else if (ecma_number_is_infinity (arg_num))
|
|
{
|
|
if (ecma_number_is_negative (arg_num))
|
|
{
|
|
ret_num = arg_num;
|
|
is_just_convert = true;
|
|
}
|
|
}
|
|
else if (ecma_number_is_infinity (ret_num)) /* ret_num is positive infinity */
|
|
{
|
|
JERRY_ASSERT (!ecma_number_is_negative (ret_num));
|
|
|
|
ret_num = arg_num;
|
|
}
|
|
else
|
|
{
|
|
JERRY_ASSERT (!ecma_number_is_nan (arg_num)
|
|
&& !ecma_number_is_infinity (arg_num));
|
|
JERRY_ASSERT (!ecma_number_is_nan (ret_num)
|
|
&& !ecma_number_is_infinity (ret_num));
|
|
|
|
if (arg_num < ret_num)
|
|
{
|
|
ret_num = arg_num;
|
|
}
|
|
}
|
|
}
|
|
|
|
ECMA_OP_TO_NUMBER_FINALIZE (arg_num);
|
|
|
|
if (ecma_is_completion_value_throw (ret_value))
|
|
{
|
|
return ret_value;
|
|
}
|
|
|
|
JERRY_ASSERT (ecma_is_completion_value_empty (ret_value));
|
|
}
|
|
|
|
JERRY_ASSERT (ecma_is_completion_value_empty (ret_value));
|
|
|
|
ecma_number_t *num_p = ecma_alloc_number ();
|
|
*num_p = ret_num;
|
|
|
|
return ecma_make_normal_completion_value (ecma_make_number_value (num_p));
|
|
} /* ecma_builtin_math_object_min */
|
|
|
|
/**
|
|
* The Math object's 'pow' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.8.2.13
|
|
*
|
|
* @return completion value
|
|
* Returned value must be freed with ecma_free_completion_value.
|
|
*/
|
|
static ecma_completion_value_t
|
|
ecma_builtin_math_object_pow (const ecma_value_t& this_arg __attr_unused___, /**< 'this' argument */
|
|
const ecma_value_t& arg1, /**< first routine's argument */
|
|
const ecma_value_t& arg2) /**< second routine's argument */
|
|
{
|
|
ecma_completion_value_t ret_value = ecma_make_empty_completion_value ();
|
|
|
|
ECMA_OP_TO_NUMBER_TRY_CATCH (x, arg1, ret_value);
|
|
ECMA_OP_TO_NUMBER_TRY_CATCH (y, arg2, ret_value);
|
|
|
|
ecma_number_t *num_p = ecma_alloc_number ();
|
|
|
|
if (ecma_number_is_nan (y)
|
|
|| (ecma_number_is_nan (x)
|
|
&& !ecma_number_is_zero (y)))
|
|
{
|
|
*num_p = ecma_number_make_nan ();
|
|
}
|
|
else if (ecma_number_is_zero (y))
|
|
{
|
|
*num_p = ECMA_NUMBER_ONE;
|
|
}
|
|
else if (ecma_number_is_infinity (y))
|
|
{
|
|
const ecma_number_t x_abs = ecma_number_abs (x);
|
|
|
|
if (x_abs == ECMA_NUMBER_ONE)
|
|
{
|
|
*num_p = ecma_number_make_nan ();
|
|
}
|
|
else if ((ecma_number_is_negative (y) && x_abs < ECMA_NUMBER_ONE)
|
|
|| (!ecma_number_is_negative (y) && x_abs > ECMA_NUMBER_ONE))
|
|
{
|
|
*num_p = ecma_number_make_infinity (false);
|
|
}
|
|
else
|
|
{
|
|
JERRY_ASSERT ((ecma_number_is_negative (y) && x_abs > ECMA_NUMBER_ONE)
|
|
|| (!ecma_number_is_negative (y) && x_abs < ECMA_NUMBER_ONE));
|
|
|
|
*num_p = ECMA_NUMBER_ZERO;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const ecma_number_t diff_is_int = ecma_op_number_remainder (y, ECMA_NUMBER_ONE);
|
|
const ecma_number_t rel_diff_is_int = ecma_number_abs (ecma_number_divide (diff_is_int,
|
|
y));
|
|
const ecma_number_t y_int = ecma_number_substract (y, diff_is_int);
|
|
|
|
const ecma_number_t y_int_half = ecma_number_multiply (y_int, ECMA_NUMBER_HALF);
|
|
const ecma_number_t diff_is_odd = ecma_op_number_remainder (y_int_half, ECMA_NUMBER_ONE);
|
|
const ecma_number_t rel_diff_is_odd = ecma_number_abs (ecma_number_divide (diff_is_odd,
|
|
y_int_half));
|
|
|
|
const bool is_y_int = (rel_diff_is_int < ecma_number_relative_eps);
|
|
const bool is_y_odd = (is_y_int && rel_diff_is_odd > ecma_number_relative_eps);
|
|
|
|
if (ecma_number_is_infinity (x))
|
|
{
|
|
if (!ecma_number_is_negative (x))
|
|
{
|
|
if (y > ECMA_NUMBER_ZERO)
|
|
{
|
|
*num_p = ecma_number_make_infinity (false);
|
|
}
|
|
else
|
|
{
|
|
JERRY_ASSERT (y < ECMA_NUMBER_ZERO);
|
|
|
|
*num_p = ECMA_NUMBER_ZERO;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (y > ECMA_NUMBER_ZERO)
|
|
{
|
|
*num_p = ecma_number_make_infinity (is_y_odd);
|
|
}
|
|
else
|
|
{
|
|
JERRY_ASSERT (y < ECMA_NUMBER_ZERO);
|
|
|
|
if (is_y_odd)
|
|
{
|
|
*num_p = ecma_number_negate (ECMA_NUMBER_ZERO);
|
|
}
|
|
else
|
|
{
|
|
*num_p = ECMA_NUMBER_ZERO;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (ecma_number_is_zero (x))
|
|
{
|
|
if (!ecma_number_is_negative (x))
|
|
{
|
|
if (y > ECMA_NUMBER_ZERO)
|
|
{
|
|
*num_p = ECMA_NUMBER_ZERO;
|
|
}
|
|
else
|
|
{
|
|
JERRY_ASSERT (y < ECMA_NUMBER_ZERO);
|
|
|
|
*num_p = ecma_number_make_infinity (false);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (y > ECMA_NUMBER_ZERO)
|
|
{
|
|
if (is_y_odd)
|
|
{
|
|
*num_p = ecma_number_negate (ECMA_NUMBER_ZERO);
|
|
}
|
|
else
|
|
{
|
|
*num_p = ECMA_NUMBER_ZERO;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
*num_p = ecma_number_make_infinity (is_y_odd);
|
|
}
|
|
}
|
|
}
|
|
else if (!ecma_number_is_infinity (x)
|
|
&& x < ECMA_NUMBER_ZERO
|
|
&& !ecma_number_is_infinity (y)
|
|
&& !is_y_int)
|
|
{
|
|
*num_p = ecma_number_make_nan ();
|
|
}
|
|
else
|
|
{
|
|
JERRY_ASSERT (!ecma_number_is_infinity (x)
|
|
&& !ecma_number_is_zero (x));
|
|
JERRY_ASSERT (!ecma_number_is_infinity (y)
|
|
&& !ecma_number_is_zero (y));
|
|
|
|
const bool sign = (x < ECMA_NUMBER_ZERO && is_y_odd);
|
|
const bool invert = (y < ECMA_NUMBER_ZERO);
|
|
|
|
JERRY_ASSERT (is_y_int || !sign);
|
|
|
|
ecma_number_t positive_x;
|
|
ecma_number_t positive_y;
|
|
|
|
if (x < ECMA_NUMBER_ZERO)
|
|
{
|
|
JERRY_ASSERT (x < ECMA_NUMBER_ZERO);
|
|
|
|
positive_x = ecma_number_negate (x);
|
|
}
|
|
else
|
|
{
|
|
positive_x = x;
|
|
}
|
|
|
|
if (invert)
|
|
{
|
|
positive_y = ecma_number_negate (y);
|
|
}
|
|
else
|
|
{
|
|
positive_y = y;
|
|
}
|
|
|
|
ecma_number_t ret_num;
|
|
|
|
if (is_y_int
|
|
&& ecma_uint32_to_number (ecma_number_to_uint32 (positive_y)) == positive_y)
|
|
{
|
|
TODO (/* Check for license issues */);
|
|
|
|
uint32_t power_uint32 = ecma_number_to_uint32 (positive_y);
|
|
|
|
ret_num = ECMA_NUMBER_ONE;
|
|
ecma_number_t power_accumulator = positive_x;
|
|
|
|
while (power_uint32 != 0)
|
|
{
|
|
if (power_uint32 % 2)
|
|
{
|
|
ret_num = ecma_number_multiply (ret_num, power_accumulator);
|
|
|
|
power_uint32--;
|
|
}
|
|
|
|
power_accumulator = ecma_number_multiply (power_accumulator, power_accumulator);
|
|
power_uint32 /= 2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* pow (x, y) = exp (y * ln (x)) */
|
|
ecma_number_t ln_x = ecma_number_ln (positive_x);
|
|
ecma_number_t y_m_ln_x = ecma_number_multiply (positive_y, ln_x);
|
|
ret_num = ecma_number_exp (y_m_ln_x);
|
|
}
|
|
|
|
if (sign)
|
|
{
|
|
ret_num = ecma_number_negate (ret_num);
|
|
}
|
|
|
|
if (invert)
|
|
{
|
|
ret_num = ecma_number_divide (ECMA_NUMBER_ONE, ret_num);
|
|
}
|
|
|
|
*num_p = ret_num;
|
|
}
|
|
}
|
|
|
|
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
|
|
|
|
ECMA_OP_TO_NUMBER_FINALIZE (y);
|
|
ECMA_OP_TO_NUMBER_FINALIZE (x);
|
|
|
|
return ret_value;
|
|
} /* ecma_builtin_math_object_pow */
|
|
|
|
/**
|
|
* The Math object's 'random' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.8.2.14
|
|
*
|
|
* @return completion value
|
|
* Returned value must be freed with ecma_free_completion_value.
|
|
*/
|
|
static ecma_completion_value_t
|
|
ecma_builtin_math_object_random (const ecma_value_t& this_arg __attr_unused___) /**< 'this' argument */
|
|
{
|
|
/* Implementation of George Marsaglia's XorShift random number generator */
|
|
TODO (/* Check for license issues */);
|
|
|
|
static uint32_t word1 = 1455997910;
|
|
static uint32_t word2 = 1999515274;
|
|
static uint32_t word3 = 1234451287;
|
|
static uint32_t word4 = 1949149569;
|
|
|
|
uint32_t intermediate = word1 ^ (word1 << 11);
|
|
intermediate ^= intermediate >> 8;
|
|
|
|
word1 = word2;
|
|
word2 = word3;
|
|
word3 = word4;
|
|
|
|
word4 ^= word4 >> 19;
|
|
word4 ^= intermediate;
|
|
|
|
const uint32_t max_uint32 = (uint32_t) -1;
|
|
ecma_number_t rand = (ecma_number_t) word4;
|
|
rand /= (ecma_number_t) max_uint32;
|
|
rand *= (ecma_number_t) (max_uint32 - 1) / (ecma_number_t) max_uint32;
|
|
|
|
ecma_number_t *rand_p = ecma_alloc_number ();
|
|
*rand_p = rand;
|
|
|
|
return ecma_make_normal_completion_value (ecma_make_number_value (rand_p));
|
|
} /* ecma_builtin_math_object_random */
|
|
|
|
/**
|
|
* The Math object's 'round' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.8.2.15
|
|
*
|
|
* @return completion value
|
|
* Returned value must be freed with ecma_free_completion_value.
|
|
*/
|
|
static ecma_completion_value_t
|
|
ecma_builtin_math_object_round (const ecma_value_t& this_arg __attr_unused___, /**< 'this' argument */
|
|
const ecma_value_t& arg) /**< routine's argument */
|
|
{
|
|
ecma_completion_value_t ret_value = ecma_make_empty_completion_value ();
|
|
|
|
ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value);
|
|
|
|
ecma_number_t *num_p = ecma_alloc_number ();
|
|
|
|
if (ecma_number_is_nan (arg_num)
|
|
|| ecma_number_is_zero (arg_num)
|
|
|| ecma_number_is_infinity (arg_num))
|
|
{
|
|
*num_p = arg_num;
|
|
}
|
|
else if (ecma_number_is_negative (arg_num)
|
|
&& arg_num >= -0.5f)
|
|
{
|
|
*num_p = ecma_number_negate (0.0f);
|
|
}
|
|
else
|
|
{
|
|
const ecma_number_t up_half = arg_num + 0.5f;
|
|
const ecma_number_t down_half = arg_num - 0.5f;
|
|
const ecma_number_t up_rounded = up_half - ecma_op_number_remainder (up_half, 1);
|
|
const ecma_number_t down_rounded = down_half - ecma_op_number_remainder (down_half, 1);
|
|
|
|
if (up_rounded - arg_num <= arg_num - down_rounded)
|
|
{
|
|
*num_p = up_rounded;
|
|
}
|
|
else
|
|
{
|
|
*num_p = down_rounded;
|
|
}
|
|
}
|
|
|
|
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
|
|
|
|
ECMA_OP_TO_NUMBER_FINALIZE (arg_num);
|
|
|
|
return ret_value;
|
|
} /* ecma_builtin_math_object_round */
|
|
|
|
/**
|
|
* The Math object's 'sin' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.8.2.16
|
|
*
|
|
* @return completion value
|
|
* Returned value must be freed with ecma_free_completion_value.
|
|
*/
|
|
static ecma_completion_value_t
|
|
ecma_builtin_math_object_sin (const ecma_value_t& this_arg __attr_unused___, /**< 'this' argument */
|
|
const ecma_value_t& arg) /**< routine's argument */
|
|
{
|
|
ecma_completion_value_t ret_value = ecma_make_empty_completion_value ();
|
|
|
|
ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value);
|
|
|
|
ecma_number_t *num_p = ecma_alloc_number ();
|
|
|
|
if (ecma_number_is_nan (arg_num)
|
|
|| ecma_number_is_infinity (arg_num))
|
|
{
|
|
*num_p = ecma_number_make_nan ();
|
|
}
|
|
else if (ecma_number_is_zero (arg_num))
|
|
{
|
|
*num_p = arg_num;
|
|
}
|
|
else
|
|
{
|
|
/* Taylor series of sin (x) around x = 0 is x - x^3/3! + x^5/5! - x^7/7! + ... */
|
|
|
|
ecma_number_t x = ecma_op_number_remainder (arg_num, 2 * ECMA_NUMBER_PI);
|
|
ecma_number_t neg_sqr_x = ecma_number_negate (ecma_number_multiply (x, x));
|
|
|
|
ecma_number_t sum = ECMA_NUMBER_ZERO;
|
|
ecma_number_t next_addendum = ecma_number_divide (x, ECMA_NUMBER_ONE);
|
|
ecma_number_t next_factorial_factor = ECMA_NUMBER_ONE;
|
|
|
|
ecma_number_t diff = ecma_number_make_infinity (false);
|
|
|
|
while ((ecma_number_is_zero (sum) && !ecma_number_is_zero (diff))
|
|
|| (!ecma_number_is_zero (sum)
|
|
&& ecma_number_abs (ecma_number_divide (diff, sum)) > ecma_number_relative_eps))
|
|
{
|
|
ecma_number_t next_sum = ecma_number_add (sum, next_addendum);
|
|
|
|
next_addendum = ecma_number_multiply (next_addendum, neg_sqr_x);
|
|
next_factorial_factor = ecma_number_add (next_factorial_factor, ECMA_NUMBER_ONE);
|
|
next_addendum = ecma_number_divide (next_addendum, next_factorial_factor);
|
|
next_factorial_factor = ecma_number_add (next_factorial_factor, ECMA_NUMBER_ONE);
|
|
next_addendum = ecma_number_divide (next_addendum, next_factorial_factor);
|
|
|
|
diff = ecma_number_abs (ecma_number_substract (sum, next_sum));
|
|
|
|
sum = next_sum;
|
|
}
|
|
|
|
*num_p = sum;
|
|
}
|
|
|
|
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
|
|
|
|
ECMA_OP_TO_NUMBER_FINALIZE (arg_num);
|
|
|
|
return ret_value;
|
|
} /* ecma_builtin_math_object_sin */
|
|
|
|
/**
|
|
* The Math object's 'sqrt' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.8.2.17
|
|
*
|
|
* @return completion value
|
|
* Returned value must be freed with ecma_free_completion_value.
|
|
*/
|
|
static ecma_completion_value_t
|
|
ecma_builtin_math_object_sqrt (const ecma_value_t& this_arg __attr_unused___, /**< 'this' argument */
|
|
const ecma_value_t& arg) /**< routine's argument */
|
|
{
|
|
ecma_completion_value_t ret_value = ecma_make_empty_completion_value ();
|
|
|
|
ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value);
|
|
|
|
ecma_number_t ret_num;
|
|
|
|
if (ecma_number_is_nan (arg_num)
|
|
|| (!ecma_number_is_zero (arg_num)
|
|
&& ecma_number_is_negative (arg_num)))
|
|
{
|
|
ret_num = ecma_number_make_nan ();
|
|
}
|
|
else if (ecma_number_is_zero (arg_num))
|
|
{
|
|
ret_num = arg_num;
|
|
}
|
|
else if (ecma_number_is_infinity (arg_num))
|
|
{
|
|
JERRY_ASSERT (!ecma_number_is_negative (arg_num));
|
|
|
|
ret_num = arg_num;
|
|
}
|
|
else
|
|
{
|
|
ret_num = ecma_number_sqrt (arg_num);
|
|
}
|
|
|
|
ecma_number_t *num_p = ecma_alloc_number ();
|
|
*num_p = ret_num;
|
|
|
|
ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p));
|
|
|
|
ECMA_OP_TO_NUMBER_FINALIZE (arg_num);
|
|
|
|
return ret_value;
|
|
} /* ecma_builtin_math_object_sqrt */
|
|
|
|
/**
|
|
* The Math object's 'tan' routine
|
|
*
|
|
* See also:
|
|
* ECMA-262 v5, 15.8.2.18
|
|
*
|
|
* @return completion value
|
|
* Returned value must be freed with ecma_free_completion_value.
|
|
*/
|
|
static ecma_completion_value_t
|
|
ecma_builtin_math_object_tan (const ecma_value_t& this_arg, /**< 'this' argument */
|
|
const ecma_value_t& arg) /**< routine's argument */
|
|
{
|
|
ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg);
|
|
} /* ecma_builtin_math_object_tan */
|
|
|
|
/**
|
|
* @}
|
|
* @}
|
|
* @}
|
|
*/
|
|
|
|
#endif /* !CONFIG_ECMA_COMPACT_PROFILE_DISABLE_MATH_BUILTIN */
|