/* Copyright 2014-2015 Samsung Electronics Co., Ltd. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ecma-alloc.h" #include "ecma-builtins.h" #include "ecma-conversion.h" #include "ecma-exceptions.h" #include "ecma-gc.h" #include "ecma-globals.h" #include "ecma-helpers.h" #include "ecma-number-arithmetic.h" #include "ecma-objects.h" #include "ecma-objects-general.h" #include "ecma-try-catch-macro.h" #include "jrt.h" #ifndef CONFIG_ECMA_COMPACT_PROFILE_DISABLE_MATH_BUILTIN #define ECMA_BUILTINS_INTERNAL #include "ecma-builtins-internal.h" #define BUILTIN_INC_HEADER_NAME "ecma-builtin-math.inc.h" #define BUILTIN_UNDERSCORED_ID math #include "ecma-builtin-internal-routines-template.inc.h" /** \addtogroup ecma ECMA * @{ * * \addtogroup ecmabuiltins * @{ * * \addtogroup object ECMA Object object built-in * @{ */ /** * The Math object's 'abs' routine * * See also: * ECMA-262 v5, 15.8.2.1 * * @return completion value * Returned value must be freed with ecma_free_completion_value. */ static ecma_completion_value_t ecma_builtin_math_object_abs (const ecma_value_t& this_arg __attr_unused___, /**< 'this' argument */ const ecma_value_t& arg) /**< routine's argument */ { ecma_completion_value_t ret_value = ecma_make_empty_completion_value (); ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value); ecma_number_t *num_p = ecma_alloc_number (); if (ecma_number_is_nan (arg_num)) { *num_p = arg_num; } else { *num_p = ecma_number_abs (arg_num); } ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p)); ECMA_OP_TO_NUMBER_FINALIZE (arg_num); return ret_value; } /* ecma_builtin_math_object_abs */ /** * The Math object's 'acos' routine * * See also: * ECMA-262 v5, 15.8.2.2 * * @return completion value * Returned value must be freed with ecma_free_completion_value. */ static ecma_completion_value_t ecma_builtin_math_object_acos (const ecma_value_t& this_arg, /**< 'this' argument */ const ecma_value_t& arg) /**< routine's argument */ { ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg); } /* ecma_builtin_math_object_acos */ /** * The Math object's 'asin' routine * * See also: * ECMA-262 v5, 15.8.2.3 * * @return completion value * Returned value must be freed with ecma_free_completion_value. */ static ecma_completion_value_t ecma_builtin_math_object_asin (const ecma_value_t& this_arg, /**< 'this' argument */ const ecma_value_t& arg) /**< routine's argument */ { ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg); } /* ecma_builtin_math_object_asin */ /** * The Math object's 'atan' routine * * See also: * ECMA-262 v5, 15.8.2.4 * * @return completion value * Returned value must be freed with ecma_free_completion_value. */ static ecma_completion_value_t ecma_builtin_math_object_atan (const ecma_value_t& this_arg, /**< 'this' argument */ const ecma_value_t& arg) /**< routine's argument */ { ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg); } /* ecma_builtin_math_object_atan */ /** * The Math object's 'atan2' routine * * See also: * ECMA-262 v5, 15.8.2.5 * * @return completion value * Returned value must be freed with ecma_free_completion_value. */ static ecma_completion_value_t ecma_builtin_math_object_atan2 (const ecma_value_t& this_arg, /**< 'this' argument */ const ecma_value_t& arg1, /**< first routine's argument */ const ecma_value_t& arg2) /**< second routine's argument */ { ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg1, arg2); } /* ecma_builtin_math_object_atan2 */ /** * The Math object's 'ceil' routine * * See also: * ECMA-262 v5, 15.8.2.6 * * @return completion value * Returned value must be freed with ecma_free_completion_value. */ static ecma_completion_value_t ecma_builtin_math_object_ceil (const ecma_value_t& this_arg, /**< 'this' argument */ const ecma_value_t& arg) /**< routine's argument */ { ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg); } /* ecma_builtin_math_object_ceil */ /** * The Math object's 'cos' routine * * See also: * ECMA-262 v5, 15.8.2.7 * * @return completion value * Returned value must be freed with ecma_free_completion_value. */ static ecma_completion_value_t ecma_builtin_math_object_cos (const ecma_value_t& this_arg __attr_unused___, /**< 'this' argument */ const ecma_value_t& arg) /**< routine's argument */ { ecma_completion_value_t ret_value = ecma_make_empty_completion_value (); ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value); ecma_number_t *num_p = ecma_alloc_number (); if (ecma_number_is_nan (arg_num) || ecma_number_is_infinity (arg_num)) { *num_p = ecma_number_make_nan (); } else if (ecma_number_is_zero (arg_num)) { *num_p = ECMA_NUMBER_ONE; } else { /* Taylor series of cos (x) around x = 0 is 1 - x^2/2! + x^4/4! - x^6/6! + ... */ ecma_number_t x = ecma_op_number_remainder (arg_num, 2 * ECMA_NUMBER_PI); ecma_number_t neg_sqr_x = ecma_number_negate (ecma_number_multiply (x, x)); ecma_number_t sum = ECMA_NUMBER_ZERO; ecma_number_t next_addendum = ECMA_NUMBER_ONE; ecma_number_t next_factorial_factor = ECMA_NUMBER_ZERO; ecma_number_t diff = ecma_number_make_infinity (false); while ((ecma_number_is_zero (sum) && !ecma_number_is_zero (diff)) || (!ecma_number_is_zero (sum) && ecma_number_abs (ecma_number_divide (diff, sum)) > ecma_number_relative_eps)) { ecma_number_t next_sum = ecma_number_add (sum, next_addendum); next_addendum = ecma_number_multiply (next_addendum, neg_sqr_x); next_factorial_factor = ecma_number_add (next_factorial_factor, ECMA_NUMBER_ONE); next_addendum = ecma_number_divide (next_addendum, next_factorial_factor); next_factorial_factor = ecma_number_add (next_factorial_factor, ECMA_NUMBER_ONE); next_addendum = ecma_number_divide (next_addendum, next_factorial_factor); diff = ecma_number_abs (ecma_number_substract (sum, next_sum)); sum = next_sum; } *num_p = sum; } ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p)); ECMA_OP_TO_NUMBER_FINALIZE (arg_num); return ret_value; } /* ecma_builtin_math_object_cos */ /** * The Math object's 'exp' routine * * See also: * ECMA-262 v5, 15.8.2.8 * * @return completion value * Returned value must be freed with ecma_free_completion_value. */ static ecma_completion_value_t ecma_builtin_math_object_exp (const ecma_value_t& this_arg __attr_unused___, /**< 'this' argument */ const ecma_value_t& arg) /**< routine's argument */ { ecma_completion_value_t ret_value = ecma_make_empty_completion_value (); ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value); ecma_number_t *num_p = ecma_alloc_number (); if (ecma_number_is_nan (arg_num)) { *num_p = arg_num; } else if (ecma_number_is_zero (arg_num)) { *num_p = ECMA_NUMBER_ONE; } else if (ecma_number_is_infinity (arg_num)) { if (ecma_number_is_negative (arg_num)) { *num_p = ECMA_NUMBER_ZERO; } else { *num_p = arg_num; } } else { *num_p = ecma_number_exp (arg_num); } ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p)); ECMA_OP_TO_NUMBER_FINALIZE (arg_num); return ret_value; } /* ecma_builtin_math_object_exp */ /** * The Math object's 'floor' routine * * See also: * ECMA-262 v5, 15.8.2.9 * * @return completion value * Returned value must be freed with ecma_free_completion_value. */ static ecma_completion_value_t ecma_builtin_math_object_floor (const ecma_value_t& this_arg, /**< 'this' argument */ const ecma_value_t& arg) /**< routine's argument */ { ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg); } /* ecma_builtin_math_object_floor */ /** * The Math object's 'log' routine * * See also: * ECMA-262 v5, 15.8.2.10 * * @return completion value * Returned value must be freed with ecma_free_completion_value. */ static ecma_completion_value_t ecma_builtin_math_object_log (const ecma_value_t& this_arg __attr_unused___, /**< 'this' argument */ const ecma_value_t& arg) /**< routine's argument */ { ecma_completion_value_t ret_value = ecma_make_empty_completion_value (); ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value); ecma_number_t *num_p = ecma_alloc_number (); if (ecma_number_is_nan (arg_num)) { *num_p = arg_num; } else if (ecma_number_is_zero (arg_num)) { *num_p = ecma_number_make_infinity (true); } else if (ecma_number_is_negative (arg_num)) { *num_p = ecma_number_make_nan (); } else if (ecma_number_is_infinity (arg_num)) { *num_p = arg_num; } else { *num_p = ecma_number_ln (arg_num); } ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p)); ECMA_OP_TO_NUMBER_FINALIZE (arg_num); return ret_value; } /* ecma_builtin_math_object_log */ /** * The Math object's 'max' routine * * See also: * ECMA-262 v5, 15.8.2.11 * * @return completion value * Returned value must be freed with ecma_free_completion_value. */ static ecma_completion_value_t ecma_builtin_math_object_max (const ecma_value_t& this_arg __attr_unused___, /**< 'this' argument */ const ecma_value_t args[], /**< arguments list */ ecma_length_t args_number) /**< number of arguments */ { ecma_completion_value_t ret_value = ecma_make_empty_completion_value (); ecma_number_t ret_num = ecma_number_make_infinity (true); bool is_just_convert = false; for (ecma_length_t arg_index = 0; arg_index < args_number; arg_index++) { ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, args[arg_index], ret_value); if (!is_just_convert) { if (unlikely (ecma_number_is_nan (arg_num))) { ret_num = arg_num; is_just_convert = true; } else if (ecma_number_is_zero (arg_num) /* both numbers are zeroes */ && ecma_number_is_zero (ret_num)) { if (!ecma_number_is_negative (arg_num)) { ret_num = arg_num; } } else if (ecma_number_is_infinity (arg_num)) { if (!ecma_number_is_negative (arg_num)) { ret_num = arg_num; is_just_convert = true; } } else if (ecma_number_is_infinity (ret_num)) /* ret_num is negative infinity */ { JERRY_ASSERT (ecma_number_is_negative (ret_num)); ret_num = arg_num; } else { JERRY_ASSERT (!ecma_number_is_nan (arg_num) && !ecma_number_is_infinity (arg_num)); JERRY_ASSERT (!ecma_number_is_nan (ret_num) && !ecma_number_is_infinity (ret_num)); if (arg_num > ret_num) { ret_num = arg_num; } } } ECMA_OP_TO_NUMBER_FINALIZE (arg_num); if (ecma_is_completion_value_throw (ret_value)) { return ret_value; } JERRY_ASSERT (ecma_is_completion_value_empty (ret_value)); } JERRY_ASSERT (ecma_is_completion_value_empty (ret_value)); ecma_number_t *num_p = ecma_alloc_number (); *num_p = ret_num; return ecma_make_normal_completion_value (ecma_make_number_value (num_p)); } /* ecma_builtin_math_object_max */ /** * The Math object's 'min' routine * * See also: * ECMA-262 v5, 15.8.2.12 * * @return completion value * Returned value must be freed with ecma_free_completion_value. */ static ecma_completion_value_t ecma_builtin_math_object_min (const ecma_value_t& this_arg __attr_unused___, /**< 'this' argument */ const ecma_value_t args[], /**< arguments list */ ecma_length_t args_number) /**< number of arguments */ { ecma_completion_value_t ret_value = ecma_make_empty_completion_value (); ecma_number_t ret_num = ecma_number_make_infinity (false); bool is_just_convert = false; for (ecma_length_t arg_index = 0; arg_index < args_number; arg_index++) { ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, args[arg_index], ret_value); if (!is_just_convert) { if (unlikely (ecma_number_is_nan (arg_num))) { ret_num = arg_num; is_just_convert = true; } else if (ecma_number_is_zero (arg_num) /* both numbers are zeroes */ && ecma_number_is_zero (ret_num)) { if (ecma_number_is_negative (arg_num)) { ret_num = arg_num; } } else if (ecma_number_is_infinity (arg_num)) { if (ecma_number_is_negative (arg_num)) { ret_num = arg_num; is_just_convert = true; } } else if (ecma_number_is_infinity (ret_num)) /* ret_num is positive infinity */ { JERRY_ASSERT (!ecma_number_is_negative (ret_num)); ret_num = arg_num; } else { JERRY_ASSERT (!ecma_number_is_nan (arg_num) && !ecma_number_is_infinity (arg_num)); JERRY_ASSERT (!ecma_number_is_nan (ret_num) && !ecma_number_is_infinity (ret_num)); if (arg_num < ret_num) { ret_num = arg_num; } } } ECMA_OP_TO_NUMBER_FINALIZE (arg_num); if (ecma_is_completion_value_throw (ret_value)) { return ret_value; } JERRY_ASSERT (ecma_is_completion_value_empty (ret_value)); } JERRY_ASSERT (ecma_is_completion_value_empty (ret_value)); ecma_number_t *num_p = ecma_alloc_number (); *num_p = ret_num; return ecma_make_normal_completion_value (ecma_make_number_value (num_p)); } /* ecma_builtin_math_object_min */ /** * The Math object's 'pow' routine * * See also: * ECMA-262 v5, 15.8.2.13 * * @return completion value * Returned value must be freed with ecma_free_completion_value. */ static ecma_completion_value_t ecma_builtin_math_object_pow (const ecma_value_t& this_arg __attr_unused___, /**< 'this' argument */ const ecma_value_t& arg1, /**< first routine's argument */ const ecma_value_t& arg2) /**< second routine's argument */ { ecma_completion_value_t ret_value = ecma_make_empty_completion_value (); ECMA_OP_TO_NUMBER_TRY_CATCH (x, arg1, ret_value); ECMA_OP_TO_NUMBER_TRY_CATCH (y, arg2, ret_value); ecma_number_t *num_p = ecma_alloc_number (); if (ecma_number_is_nan (y) || (ecma_number_is_nan (x) && !ecma_number_is_zero (y))) { *num_p = ecma_number_make_nan (); } else if (ecma_number_is_zero (y)) { *num_p = ECMA_NUMBER_ONE; } else if (ecma_number_is_infinity (y)) { const ecma_number_t x_abs = ecma_number_abs (x); if (x_abs == ECMA_NUMBER_ONE) { *num_p = ecma_number_make_nan (); } else if ((ecma_number_is_negative (y) && x_abs < ECMA_NUMBER_ONE) || (!ecma_number_is_negative (y) && x_abs > ECMA_NUMBER_ONE)) { *num_p = ecma_number_make_infinity (false); } else { JERRY_ASSERT ((ecma_number_is_negative (y) && x_abs > ECMA_NUMBER_ONE) || (!ecma_number_is_negative (y) && x_abs < ECMA_NUMBER_ONE)); *num_p = ECMA_NUMBER_ZERO; } } else { const ecma_number_t diff_is_int = ecma_op_number_remainder (y, ECMA_NUMBER_ONE); const ecma_number_t rel_diff_is_int = ecma_number_abs (ecma_number_divide (diff_is_int, y)); const ecma_number_t y_int = ecma_number_substract (y, diff_is_int); const ecma_number_t y_int_half = ecma_number_multiply (y_int, ECMA_NUMBER_HALF); const ecma_number_t diff_is_odd = ecma_op_number_remainder (y_int_half, ECMA_NUMBER_ONE); const ecma_number_t rel_diff_is_odd = ecma_number_abs (ecma_number_divide (diff_is_odd, y_int_half)); const bool is_y_int = (rel_diff_is_int < ecma_number_relative_eps); const bool is_y_odd = (is_y_int && rel_diff_is_odd > ecma_number_relative_eps); if (ecma_number_is_infinity (x)) { if (!ecma_number_is_negative (x)) { if (y > ECMA_NUMBER_ZERO) { *num_p = ecma_number_make_infinity (false); } else { JERRY_ASSERT (y < ECMA_NUMBER_ZERO); *num_p = ECMA_NUMBER_ZERO; } } else { if (y > ECMA_NUMBER_ZERO) { *num_p = ecma_number_make_infinity (is_y_odd); } else { JERRY_ASSERT (y < ECMA_NUMBER_ZERO); if (is_y_odd) { *num_p = ecma_number_negate (ECMA_NUMBER_ZERO); } else { *num_p = ECMA_NUMBER_ZERO; } } } } else if (ecma_number_is_zero (x)) { if (!ecma_number_is_negative (x)) { if (y > ECMA_NUMBER_ZERO) { *num_p = ECMA_NUMBER_ZERO; } else { JERRY_ASSERT (y < ECMA_NUMBER_ZERO); *num_p = ecma_number_make_infinity (false); } } else { if (y > ECMA_NUMBER_ZERO) { if (is_y_odd) { *num_p = ecma_number_negate (ECMA_NUMBER_ZERO); } else { *num_p = ECMA_NUMBER_ZERO; } } else { *num_p = ecma_number_make_infinity (is_y_odd); } } } else if (!ecma_number_is_infinity (x) && x < ECMA_NUMBER_ZERO && !ecma_number_is_infinity (y) && !is_y_int) { *num_p = ecma_number_make_nan (); } else { JERRY_ASSERT (!ecma_number_is_infinity (x) && !ecma_number_is_zero (x)); JERRY_ASSERT (!ecma_number_is_infinity (y) && !ecma_number_is_zero (y)); const bool sign = (x < ECMA_NUMBER_ZERO && is_y_odd); const bool invert = (y < ECMA_NUMBER_ZERO); JERRY_ASSERT (is_y_int || !sign); ecma_number_t positive_x; ecma_number_t positive_y; if (x < ECMA_NUMBER_ZERO) { JERRY_ASSERT (x < ECMA_NUMBER_ZERO); positive_x = ecma_number_negate (x); } else { positive_x = x; } if (invert) { positive_y = ecma_number_negate (y); } else { positive_y = y; } ecma_number_t ret_num; if (is_y_int && ecma_uint32_to_number (ecma_number_to_uint32 (positive_y)) == positive_y) { TODO (/* Check for license issues */); uint32_t power_uint32 = ecma_number_to_uint32 (positive_y); ret_num = ECMA_NUMBER_ONE; ecma_number_t power_accumulator = positive_x; while (power_uint32 != 0) { if (power_uint32 % 2) { ret_num = ecma_number_multiply (ret_num, power_accumulator); power_uint32--; } power_accumulator = ecma_number_multiply (power_accumulator, power_accumulator); power_uint32 /= 2; } } else { /* pow (x, y) = exp (y * ln (x)) */ ecma_number_t ln_x = ecma_number_ln (positive_x); ecma_number_t y_m_ln_x = ecma_number_multiply (positive_y, ln_x); ret_num = ecma_number_exp (y_m_ln_x); } if (sign) { ret_num = ecma_number_negate (ret_num); } if (invert) { ret_num = ecma_number_divide (ECMA_NUMBER_ONE, ret_num); } *num_p = ret_num; } } ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p)); ECMA_OP_TO_NUMBER_FINALIZE (y); ECMA_OP_TO_NUMBER_FINALIZE (x); return ret_value; } /* ecma_builtin_math_object_pow */ /** * The Math object's 'random' routine * * See also: * ECMA-262 v5, 15.8.2.14 * * @return completion value * Returned value must be freed with ecma_free_completion_value. */ static ecma_completion_value_t ecma_builtin_math_object_random (const ecma_value_t& this_arg __attr_unused___) /**< 'this' argument */ { /* Implementation of George Marsaglia's XorShift random number generator */ TODO (/* Check for license issues */); static uint32_t word1 = 1455997910; static uint32_t word2 = 1999515274; static uint32_t word3 = 1234451287; static uint32_t word4 = 1949149569; uint32_t intermediate = word1 ^ (word1 << 11); intermediate ^= intermediate >> 8; word1 = word2; word2 = word3; word3 = word4; word4 ^= word4 >> 19; word4 ^= intermediate; const uint32_t max_uint32 = (uint32_t) -1; ecma_number_t rand = (ecma_number_t) word4; rand /= (ecma_number_t) max_uint32; rand *= (ecma_number_t) (max_uint32 - 1) / (ecma_number_t) max_uint32; ecma_number_t *rand_p = ecma_alloc_number (); *rand_p = rand; return ecma_make_normal_completion_value (ecma_make_number_value (rand_p)); } /* ecma_builtin_math_object_random */ /** * The Math object's 'round' routine * * See also: * ECMA-262 v5, 15.8.2.15 * * @return completion value * Returned value must be freed with ecma_free_completion_value. */ static ecma_completion_value_t ecma_builtin_math_object_round (const ecma_value_t& this_arg __attr_unused___, /**< 'this' argument */ const ecma_value_t& arg) /**< routine's argument */ { ecma_completion_value_t ret_value = ecma_make_empty_completion_value (); ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value); ecma_number_t *num_p = ecma_alloc_number (); if (ecma_number_is_nan (arg_num) || ecma_number_is_zero (arg_num) || ecma_number_is_infinity (arg_num)) { *num_p = arg_num; } else if (ecma_number_is_negative (arg_num) && arg_num >= -0.5f) { *num_p = ecma_number_negate (0.0f); } else { const ecma_number_t up_half = arg_num + 0.5f; const ecma_number_t down_half = arg_num - 0.5f; const ecma_number_t up_rounded = up_half - ecma_op_number_remainder (up_half, 1); const ecma_number_t down_rounded = down_half - ecma_op_number_remainder (down_half, 1); if (up_rounded - arg_num <= arg_num - down_rounded) { *num_p = up_rounded; } else { *num_p = down_rounded; } } ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p)); ECMA_OP_TO_NUMBER_FINALIZE (arg_num); return ret_value; } /* ecma_builtin_math_object_round */ /** * The Math object's 'sin' routine * * See also: * ECMA-262 v5, 15.8.2.16 * * @return completion value * Returned value must be freed with ecma_free_completion_value. */ static ecma_completion_value_t ecma_builtin_math_object_sin (const ecma_value_t& this_arg __attr_unused___, /**< 'this' argument */ const ecma_value_t& arg) /**< routine's argument */ { ecma_completion_value_t ret_value = ecma_make_empty_completion_value (); ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value); ecma_number_t *num_p = ecma_alloc_number (); if (ecma_number_is_nan (arg_num) || ecma_number_is_infinity (arg_num)) { *num_p = ecma_number_make_nan (); } else if (ecma_number_is_zero (arg_num)) { *num_p = arg_num; } else { /* Taylor series of sin (x) around x = 0 is x - x^3/3! + x^5/5! - x^7/7! + ... */ ecma_number_t x = ecma_op_number_remainder (arg_num, 2 * ECMA_NUMBER_PI); ecma_number_t neg_sqr_x = ecma_number_negate (ecma_number_multiply (x, x)); ecma_number_t sum = ECMA_NUMBER_ZERO; ecma_number_t next_addendum = ecma_number_divide (x, ECMA_NUMBER_ONE); ecma_number_t next_factorial_factor = ECMA_NUMBER_ONE; ecma_number_t diff = ecma_number_make_infinity (false); while ((ecma_number_is_zero (sum) && !ecma_number_is_zero (diff)) || (!ecma_number_is_zero (sum) && ecma_number_abs (ecma_number_divide (diff, sum)) > ecma_number_relative_eps)) { ecma_number_t next_sum = ecma_number_add (sum, next_addendum); next_addendum = ecma_number_multiply (next_addendum, neg_sqr_x); next_factorial_factor = ecma_number_add (next_factorial_factor, ECMA_NUMBER_ONE); next_addendum = ecma_number_divide (next_addendum, next_factorial_factor); next_factorial_factor = ecma_number_add (next_factorial_factor, ECMA_NUMBER_ONE); next_addendum = ecma_number_divide (next_addendum, next_factorial_factor); diff = ecma_number_abs (ecma_number_substract (sum, next_sum)); sum = next_sum; } *num_p = sum; } ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p)); ECMA_OP_TO_NUMBER_FINALIZE (arg_num); return ret_value; } /* ecma_builtin_math_object_sin */ /** * The Math object's 'sqrt' routine * * See also: * ECMA-262 v5, 15.8.2.17 * * @return completion value * Returned value must be freed with ecma_free_completion_value. */ static ecma_completion_value_t ecma_builtin_math_object_sqrt (const ecma_value_t& this_arg __attr_unused___, /**< 'this' argument */ const ecma_value_t& arg) /**< routine's argument */ { ecma_completion_value_t ret_value = ecma_make_empty_completion_value (); ECMA_OP_TO_NUMBER_TRY_CATCH (arg_num, arg, ret_value); ecma_number_t ret_num; if (ecma_number_is_nan (arg_num) || (!ecma_number_is_zero (arg_num) && ecma_number_is_negative (arg_num))) { ret_num = ecma_number_make_nan (); } else if (ecma_number_is_zero (arg_num)) { ret_num = arg_num; } else if (ecma_number_is_infinity (arg_num)) { JERRY_ASSERT (!ecma_number_is_negative (arg_num)); ret_num = arg_num; } else { ret_num = ecma_number_sqrt (arg_num); } ecma_number_t *num_p = ecma_alloc_number (); *num_p = ret_num; ret_value = ecma_make_normal_completion_value (ecma_make_number_value (num_p)); ECMA_OP_TO_NUMBER_FINALIZE (arg_num); return ret_value; } /* ecma_builtin_math_object_sqrt */ /** * The Math object's 'tan' routine * * See also: * ECMA-262 v5, 15.8.2.18 * * @return completion value * Returned value must be freed with ecma_free_completion_value. */ static ecma_completion_value_t ecma_builtin_math_object_tan (const ecma_value_t& this_arg, /**< 'this' argument */ const ecma_value_t& arg) /**< routine's argument */ { ECMA_BUILTIN_CP_UNIMPLEMENTED (this_arg, arg); } /* ecma_builtin_math_object_tan */ /** * @} * @} * @} */ #endif /* !CONFIG_ECMA_COMPACT_PROFILE_DISABLE_MATH_BUILTIN */