2018-07-13 15:02:58 +03:00

95 lines
3.4 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# FloydWarshall Algorithm
In computer science, the **FloydWarshall algorithm** is an algorithm for finding
shortest paths in a weighted graph with positive or negative edge weights (but
with no negative cycles). A single execution of the algorithm will find the
lengths (summed weights) of shortest paths between all pairs of vertices. Although
it does not return details of the paths themselves, it is possible to reconstruct
the paths with simple modifications to the algorithm.
## Algorithm
The FloydWarshall algorithm compares all possible paths through the graph between
each pair of vertices. It is able to do this with `O(|V|^3)` comparisons in a graph.
This is remarkable considering that there may be up to `|V|^2` edges in the graph,
and every combination of edges is tested. It does so by incrementally improving an
estimate on the shortest path between two vertices, until the estimate is optimal.
Consider a graph `G` with vertices `V` numbered `1` through `N`. Further consider
a function `shortestPath(i, j, k)` that returns the shortest possible path
from `i` to `j` using vertices only from the set `{1, 2, ..., k}` as
intermediate points along the way. Now, given this function, our goal is to
find the shortest path from each `i` to each `j` using only vertices
in `{1, 2, ..., N}`.
![Recursive Formula](https://wikimedia.org/api/rest_v1/media/math/render/svg/f9b75e25063384ccca499c56f9a279abf661ad3b)
![Recursive Formula](https://wikimedia.org/api/rest_v1/media/math/render/svg/34ac7c89bbb18df3fd660225fd38997079e5e513)
![Recursive Formula](https://wikimedia.org/api/rest_v1/media/math/render/svg/0326d6c14def89269c029da59eba012d0f2edc9d)
This formula is the heart of the FloydWarshall algorithm.
## Example
The algorithm above is executed on the graph on the left below:
![Example](https://upload.wikimedia.org/wikipedia/commons/2/2e/Floyd-Warshall_example.svg)
In the tables below `i` is row numbers and `j` is column numbers.
**k = 0**
| | 1 | 2 | 3 | 4 |
|:-----:|:---:|:---:|:---:|:---:|
| **1** | 0 | ∞ | 2 | ∞ |
| **2** | 4 | 0 | 3 | ∞ |
| **3** | ∞ | ∞ | 0 | 2 |
| **4** | ∞ | 1 | ∞ | 0 |
**k = 1**
| | 1 | 2 | 3 | 4 |
|:-----:|:---:|:---:|:---:|:---:|
| **1** | 0 | ∞ | 2 | ∞ |
| **2** | 4 | 0 | 2 | ∞ |
| **3** | ∞ | ∞ | 0 | 2 |
| **4** | ∞ | | ∞ | 0 |
**k = 2**
| | 1 | 2 | 3 | 4 |
|:-----:|:---:|:---:|:---:|:---:|
| **1** | 0 | ∞ | 2 | ∞ |
| **2** | 4 | 0 | 2 | ∞ |
| **3** | ∞ | ∞ | 0 | 2 |
| **4** | 3 | 1 | 1 | 0 |
**k = 3**
| | 1 | 2 | 3 | 4 |
|:-----:|:---:|:---:|:---:|:---:|
| **1** | 0 | ∞ | 2 | 0 |
| **2** | 4 | 0 | 2 | 4 |
| **3** | ∞ | ∞ | 0 | 2 |
| **4** | 3 | 1 | 1 | 0 |
**k = 4**
| | 1 | 2 | 3 | 4 |
|:-----:|:---:|:---:|:---:|:---:|
| **1** | 0 | 1 | 2 | 0 |
| **2** | 4 | 0 | 2 | 4 |
| **3** | 5 | 1 | 0 | 2 |
| **4** | 3 | 1 | 1 | 0 |
## References
- [Wikipedia](https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm)
- [YouTube (by Abdul Bari)](https://www.youtube.com/watch?v=oNI0rf2P9gE&list=PLLXdhg_r2hKA7DPDsunoDZ-Z769jWn4R8&index=74)
- [YouTube (by Tushar Roy)](https://www.youtube.com/watch?v=LwJdNfdLF9s&list=PLLXdhg_r2hKA7DPDsunoDZ-Z769jWn4R8&index=75)