* checkpoint vitepress docs * edits * edits * hero drop shadow * d3-array edits * resolve d3 * split d3-array * move d3-array stuff around * d3-array is collapsed: true * italicize parameter names * searching edits * update dependencies * d3-array edits * array edits * array edits * array edits * array edits * array edits * move files * array edits * array edits * array edits * getting started edits * modules page * array edits * more structure * live example * dsv edits * fetch edits * dsv edits * random edits * time format edits * time edits * time edits * modules edits * color edits * color edits * interpolate edits * scale-chromatic edits * selection edits * break up d3-interpolate * scale edits * time scale edits * scale edits * scale edits * band edits * band edits * more descriptive titles * band and point edits * sequential edits * diverging edits * quantize edits * quantile edits * threshold edits * doc edits * fix titles * sequential edits * axis edits * axis edits * axis edits * shape edits * shape edits * dark mode chart * dark mode chart * curve edits * interpolate edits * line edits * link edits * radial edits * pie edits * symbol edits * stack edits * stack examples * path edits * polygon edits * quadtree edits * random examples * ease edits * ease edits * ease edits * timer edits * delaunay edits * quadtree find example * voronoi edits * dispatch edits * contour edits * chord edits * chord edits * fix find highlight * quadtree animation * transition edits * transition edits * transition edits * zoom edits * drag edits * brush edits * force edits * voronoi neighbors example * hierarchy edits * api edits * community edits * getting started edits * geo edits * Add short "D3 in React" section (#3659) * Add short "D3 in React" section I know you removed the TODO but I was already trying to fill it in! I think just making the distinction of modules that touch the DOM and those that don't was super clarifying for me personally when I figured that out. And I always forget the most basic ref pattern (and still might've messed it up here). I don't think we should get into updating or interactivity or whatever, but I think just this much goes a long way toward demystifying (and showing just the most basic best practices). * forgot i made data generic, rm reference to normal distribution * useEffect cleans up after itself Co-authored-by: Mike Bostock <mbostock@gmail.com> * Update getting-started.md --------- Co-authored-by: Mike Bostock <mbostock@gmail.com> * build fixes * index edits --------- Co-authored-by: Toph Tucker <tophtucker@gmail.com>
2.8 KiB
Collide force
The collide force treats nodes as circles with a given radius, rather than points, and prevents nodes from overlapping. More formally, two nodes a and b are separated so that the distance between a and b is at least radius(a) + radius(b). To reduce jitter, this is by default a “soft” constraint with a configurable strength and iteration count.
forceCollide(radius)
Source · Creates a new circle collide force with the specified radius. If radius is not specified, it defaults to the constant one for all nodes.
const collide = d3.forceCollide((d) => d.r);
collide.radius(radius)
Source · If radius is specified, sets the radius accessor to the specified number or function, re-evaluates the radius accessor for each node, and returns this force. If radius is not specified, returns the current radius accessor, which defaults to:
function radius() {
return 1;
}
The radius accessor is invoked for each node in the simulation, being passed the node and its zero-based index. The resulting number is then stored internally, such that the radius of each node is only recomputed when the force is initialized or when this method is called with a new radius, and not on every application of the force.
collide.strength(strength)
Source · If strength is specified, sets the force strength to the specified number in the range [0,1] and returns this force. If strength is not specified, returns the current strength which defaults to 1.
Overlapping nodes are resolved through iterative relaxation. For each node, the other nodes that are anticipated to overlap at the next tick (using the anticipated positions ⟨x + vx,y + vy⟩) are determined; the node’s velocity is then modified to push the node out of each overlapping node. The change in velocity is dampened by the force’s strength such that the resolution of simultaneous overlaps can be blended together to find a stable solution.
collide.iterations(iterations)
Source · If iterations is specified, sets the number of iterations per application to the specified number and returns this force. If iterations is not specified, returns the current iteration count which defaults to 1. Increasing the number of iterations greatly increases the rigidity of the constraint and avoids partial overlap of nodes, but also increases the runtime cost to evaluate the force.