mirror of
https://github.com/tengge1/ShadowEditor.git
synced 2026-01-25 15:08:11 +00:00
43 lines
1.5 KiB
Markdown
43 lines
1.5 KiB
Markdown
# Tensorflow学习
|
||
|
||
## 安装GPU版Tensorflow方法
|
||
|
||
1. 安装Python:python-3.7.4-amd64.exe。
|
||
|
||
下载地址:https://www.python.org/downloads/release/python-374/
|
||
|
||
2. 安装CUDA 10.0。
|
||
|
||
下载地址:https://developer.nvidia.com/cuda-10.0-download-archive
|
||
|
||
注意:要安装GPU驱动、CUDA工具包、CUDA附带的CUPTI。
|
||
|
||
3. 安装CUDNN 7.6.2。
|
||
|
||
下载地址:https://developer.nvidia.com/rdp/cudnn-archive
|
||
|
||
4. 安装GPU版Tensorflow。
|
||
|
||
```
|
||
pip install tensorflow-gpu==2.0.0-rc0
|
||
```
|
||
|
||
## 测试项目
|
||
|
||
1. tensorflow/basic/hello_world.py:Hello World示例
|
||
2. tensorflow/basic/calculate.py: 加减乘除运算
|
||
3. tensorflow/basic/calculate_matrix.py: 矩阵运算
|
||
3. tensorflow/basic/mnist_beginer.py: 初学者手写数字识别,准确度:96.3%
|
||
4. tensorflow/basic/mnist_expert.py: 专家级手写数字识别,准确度:98.112%
|
||
5. tensorflow/basic/image_classification.py: 服装图片分类,准确度:87.81%
|
||
6. tensorflow/basic/basic_text_classification.py: 评论文本分类,准确度:86.2%
|
||
7. tensorflow/basic/feature_columns.py: 对结构化数据进行分类,准确度:72.54%
|
||
8. tensorflow/basic/basic_regression.py: 线性回归
|
||
9. tensorflow/basic/overfit_and_underfit.py: 过拟合和欠拟合,准确度:99.99%
|
||
10. tensorflow/basic/save_and_restore_models.py: 保存和恢复模型
|
||
11. tensorflow/basic/intro_to_cnns.py: 卷积神经网络
|
||
|
||
## 相关地址
|
||
|
||
* 官网: https://pypi.org/project/tensorflow/#history
|
||
* 最新版本: https://pypi.org/project/tensorflow-gpu/#history |