mirror of
https://github.com/tengge1/ShadowEditor.git
synced 2026-01-25 15:08:11 +00:00
50 lines
1.2 KiB
Python
50 lines
1.2 KiB
Python
# https://keras.io/getting-started/sequential-model-guide/
|
||
# Multilayer Perceptron (MLP) for multi-class softmax classification
|
||
# 用于多层softmax分类的多层感知器(MLP)
|
||
|
||
import numpy as np
|
||
from tensorflow import keras
|
||
from tensorflow.keras.models import Sequential
|
||
from tensorflow.keras.layers import Dense, Dropout, Activation
|
||
from tensorflow.keras.optimizers import SGD
|
||
|
||
x_train = np.random.random((1000, 20))
|
||
y_train = keras.utils.to_categorical(
|
||
np.random.randint(10, size=(1000, 1)),
|
||
num_classes=10
|
||
)
|
||
x_test = np.random.random((100, 20))
|
||
y_test = keras.utils.to_categorical(
|
||
np.random.randint(10, size=(100, 1)),
|
||
num_classes=10
|
||
)
|
||
|
||
model = Sequential()
|
||
model.add(Dense(64, activation='relu', input_dim=20))
|
||
model.add(Dropout(0.5))
|
||
model.add(Dense(64, activation='relu'))
|
||
model.add(Dropout(0.5))
|
||
model.add(Dense(10, activation='softmax'))
|
||
|
||
sgd = SGD(
|
||
lr=0.01,
|
||
decay=1e-6,
|
||
momentum=0.9,
|
||
nesterov=True
|
||
)
|
||
|
||
model.compile(
|
||
loss='categorical_crossentropy',
|
||
optimizer=sgd,
|
||
metrics=['accuracy']
|
||
)
|
||
|
||
model.fit(
|
||
x_train,
|
||
y_train,
|
||
epochs=20,
|
||
batch_size=128
|
||
)
|
||
|
||
score = model.evaluate(x_test, y_test, batch_size=128)
|