# https://keras.io/getting-started/sequential-model-guide/ # Multilayer Perceptron (MLP) for multi-class softmax classification # 用于多层softmax分类的多层感知器(MLP) import numpy as np from tensorflow import keras from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Activation from tensorflow.keras.optimizers import SGD x_train = np.random.random((1000, 20)) y_train = keras.utils.to_categorical( np.random.randint(10, size=(1000, 1)), num_classes=10 ) x_test = np.random.random((100, 20)) y_test = keras.utils.to_categorical( np.random.randint(10, size=(100, 1)), num_classes=10 ) model = Sequential() model.add(Dense(64, activation='relu', input_dim=20)) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) sgd = SGD( lr=0.01, decay=1e-6, momentum=0.9, nesterov=True ) model.compile( loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'] ) model.fit( x_train, y_train, epochs=20, batch_size=128 ) score = model.evaluate(x_test, y_test, batch_size=128)