Connor Fitzgerald a7defb723f
Cleanups for WebGPU (#3671)
Co-authored-by: Connor Fitzgerald <connor@modyfi.io>
2023-04-12 21:27:30 +00:00

6159 lines
238 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*! This library describes the API surface of WebGPU that is agnostic of the backend.
* This API is used for targeting both Web and Native.
*/
#![cfg_attr(docsrs, feature(doc_cfg, doc_auto_cfg))]
#![allow(
// We don't use syntax sugar where it's not necessary.
clippy::match_like_matches_macro,
)]
#![warn(missing_docs, unsafe_op_in_unsafe_fn)]
#[cfg(any(feature = "serde", test))]
use serde::{Deserialize, Serialize};
use std::hash::{Hash, Hasher};
use std::path::PathBuf;
use std::{num::NonZeroU32, ops::Range};
pub mod assertions;
pub mod math;
// Use this macro instead of the one provided by the bitflags_serde_shim crate
// because the latter produces an error when deserializing bits that are not
// specified in the bitflags, while we want deserialization to succeed and
// and unspecified bits to lead to errors handled in wgpu-core.
// Note that plainly deriving Serialize and Deserialized would have a similar
// behavior to this macro (unspecified bit do not produce an error).
macro_rules! impl_bitflags {
($name:ident) => {
#[cfg(feature = "trace")]
impl serde::Serialize for $name {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
self.bits().serialize(serializer)
}
}
#[cfg(feature = "replay")]
impl<'de> serde::Deserialize<'de> for $name {
fn deserialize<D>(deserializer: D) -> Result<$name, D::Error>
where
D: serde::Deserializer<'de>,
{
let value = <_ as serde::Deserialize<'de>>::deserialize(deserializer)?;
Ok($name::from_bits_retain(value))
}
}
impl $name {
/// Returns true if the bitflags contains bits that are not part of
/// the bitflags definition.
pub fn contains_invalid_bits(&self) -> bool {
let all = Self::all().bits();
(self.bits() | all) != all
}
}
};
}
/// Integral type used for buffer offsets.
pub type BufferAddress = u64;
/// Integral type used for buffer slice sizes.
pub type BufferSize = std::num::NonZeroU64;
/// Integral type used for binding locations in shaders.
pub type ShaderLocation = u32;
/// Integral type used for dynamic bind group offsets.
pub type DynamicOffset = u32;
/// Buffer-Texture copies must have [`bytes_per_row`] aligned to this number.
///
/// This doesn't apply to [`Queue::write_texture`][Qwt].
///
/// [`bytes_per_row`]: ImageDataLayout::bytes_per_row
/// [Qwt]: ../wgpu/struct.Queue.html#method.write_texture
pub const COPY_BYTES_PER_ROW_ALIGNMENT: u32 = 256;
/// An offset into the query resolve buffer has to be aligned to this.
pub const QUERY_RESOLVE_BUFFER_ALIGNMENT: BufferAddress = 256;
/// Buffer to buffer copy as well as buffer clear offsets and sizes must be aligned to this number.
pub const COPY_BUFFER_ALIGNMENT: BufferAddress = 4;
/// Size to align mappings.
pub const MAP_ALIGNMENT: BufferAddress = 8;
/// Vertex buffer strides have to be aligned to this number.
pub const VERTEX_STRIDE_ALIGNMENT: BufferAddress = 4;
/// Alignment all push constants need
pub const PUSH_CONSTANT_ALIGNMENT: u32 = 4;
/// Maximum queries in a query set
pub const QUERY_SET_MAX_QUERIES: u32 = 8192;
/// Size of a single piece of query data.
pub const QUERY_SIZE: u32 = 8;
/// Backends supported by wgpu.
#[repr(u8)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum Backend {
/// Dummy backend, used for testing.
Empty = 0,
/// Vulkan API
Vulkan = 1,
/// Metal API (Apple platforms)
Metal = 2,
/// Direct3D-12 (Windows)
Dx12 = 3,
/// Direct3D-11 (Windows)
Dx11 = 4,
/// OpenGL ES-3 (Linux, Android)
Gl = 5,
/// WebGPU in the browser
BrowserWebGpu = 6,
}
/// Power Preference when choosing a physical adapter.
///
/// Corresponds to [WebGPU `GPUPowerPreference`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gpupowerpreference).
#[repr(C)]
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "kebab-case"))]
pub enum PowerPreference {
/// Adapter that uses the least possible power. This is often an integrated GPU.
#[default]
LowPower = 0,
/// Adapter that has the highest performance. This is often a discrete GPU.
HighPerformance = 1,
}
bitflags::bitflags! {
/// Represents the backends that wgpu will use.
#[repr(transparent)]
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct Backends: u32 {
/// Supported on Windows, Linux/Android, and macOS/iOS via Vulkan Portability (with the Vulkan feature enabled)
const VULKAN = 1 << Backend::Vulkan as u32;
/// Supported on Linux/Android, the web through webassembly via WebGL, and Windows and
/// macOS/iOS via ANGLE
const GL = 1 << Backend::Gl as u32;
/// Supported on macOS/iOS
const METAL = 1 << Backend::Metal as u32;
/// Supported on Windows 10
const DX12 = 1 << Backend::Dx12 as u32;
/// Supported on Windows 7+
const DX11 = 1 << Backend::Dx11 as u32;
/// Supported when targeting the web through webassembly
const BROWSER_WEBGPU = 1 << Backend::BrowserWebGpu as u32;
/// All the apis that wgpu offers first tier of support for.
///
/// Vulkan + Metal + DX12 + Browser WebGPU
const PRIMARY = Self::VULKAN.bits()
| Self::METAL.bits()
| Self::DX12.bits()
| Self::BROWSER_WEBGPU.bits();
/// All the apis that wgpu offers second tier of support for. These may
/// be unsupported/still experimental.
///
/// OpenGL + DX11
const SECONDARY = Self::GL.bits() | Self::DX11.bits();
}
}
impl_bitflags!(Backends);
impl From<Backend> for Backends {
fn from(backend: Backend) -> Self {
Self::from_bits(1 << backend as u32).unwrap()
}
}
/// Options for requesting adapter.
///
/// Corresponds to [WebGPU `GPURequestAdapterOptions`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpurequestadapteroptions).
#[repr(C)]
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct RequestAdapterOptions<S> {
/// Power preference for the adapter.
pub power_preference: PowerPreference,
/// Indicates that only a fallback adapter can be returned. This is generally a "software"
/// implementation on the system.
pub force_fallback_adapter: bool,
/// Surface that is required to be presentable with the requested adapter. This does not
/// create the surface, only guarantees that the adapter can present to said surface.
pub compatible_surface: Option<S>,
}
impl<S> Default for RequestAdapterOptions<S> {
fn default() -> Self {
Self {
power_preference: PowerPreference::default(),
force_fallback_adapter: false,
compatible_surface: None,
}
}
}
//TODO: make robust resource access configurable
bitflags::bitflags! {
/// Features that are not guaranteed to be supported.
///
/// These are either part of the webgpu standard, or are extension features supported by
/// wgpu when targeting native.
///
/// If you want to use a feature, you need to first verify that the adapter supports
/// the feature. If the adapter does not support the feature, requesting a device with it enabled
/// will panic.
///
/// Corresponds to [WebGPU `GPUFeatureName`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gpufeaturename).
#[repr(transparent)]
#[derive(Default)]
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct Features: u64 {
//
// ---- Start numbering at 1 << 0 ----
//
// WebGPU features:
//
// API:
/// By default, polygon depth is clipped to 0-1 range before/during rasterization.
/// Anything outside of that range is rejected, and respective fragments are not touched.
///
/// With this extension, we can disabling clipping. That allows
/// shadow map occluders to be rendered into a tighter depth range.
///
/// Supported platforms:
/// - desktops
/// - some mobile chips
///
/// This is a web and native feature.
const DEPTH_CLIP_CONTROL = 1 << 0;
/// Enables use of Timestamp Queries. These queries tell the current gpu timestamp when
/// all work before the query is finished. Call [`CommandEncoder::write_timestamp`],
/// [`RenderPassEncoder::write_timestamp`], or [`ComputePassEncoder::write_timestamp`] to
/// write out a timestamp.
///
/// They must be resolved using [`CommandEncoder::resolve_query_sets`] into a buffer,
/// then the result must be multiplied by the timestamp period [`Queue::get_timestamp_period`]
/// to get the timestamp in nanoseconds. Multiple timestamps can then be diffed to get the
/// time for operations between them to finish.
///
/// Supported Platforms:
/// - Vulkan
/// - DX12
///
/// This is currently unimplemented on Metal.
///
/// This is a web and native feature.
const TIMESTAMP_QUERY = 1 << 1;
/// Allows non-zero value for the "first instance" in indirect draw calls.
///
/// Supported Platforms:
/// - Vulkan (mostly)
/// - DX12
/// - Metal
///
/// This is a web and native feature.
const INDIRECT_FIRST_INSTANCE = 1 << 2;
// 3..8 available
// Shader:
/// Allows shaders to acquire the FP16 ability
///
/// Note: this is not supported in naga yetonly through spir-v passthrough right now.
///
/// Supported Platforms:
/// - Vulkan
/// - Metal
///
/// This is a web and native feature.
const SHADER_F16 = 1 << 8;
// 9..14 available
// Texture Formats:
// The features starting with a ? are features that might become part of the spec or
// at the very least we can implement as native features; since they should cover all
// possible formats and capabilities across backends.
//
// ? const FORMATS_TIER_1 = 1 << 14; (https://github.com/gpuweb/gpuweb/issues/3837)
// ? const RW_STORAGE_TEXTURE_TIER_1 = 1 << 15; (https://github.com/gpuweb/gpuweb/issues/3838)
// TODO const BGRA8UNORM_STORAGE = 1 << 16;
// ? const NORM16_FILTERABLE = 1 << 17; (https://github.com/gpuweb/gpuweb/issues/3839)
// ? const NORM16_RESOLVE = 1 << 18; (https://github.com/gpuweb/gpuweb/issues/3839)
// TODO const FLOAT32_FILTERABLE = 1 << 19;
// ? const FLOAT32_BLENDABLE = 1 << 20; (https://github.com/gpuweb/gpuweb/issues/3556)
// ? const 32BIT_FORMAT_MULTISAMPLE = 1 << 21; (https://github.com/gpuweb/gpuweb/issues/3844)
// ? const 32BIT_FORMAT_RESOLVE = 1 << 22; (https://github.com/gpuweb/gpuweb/issues/3844)
// TODO const RG11B10UFLOAT_RENDERABLE = 1 << 23;
/// Allows for explicit creation of textures of format [`TextureFormat::Depth32FloatStencil8`]
///
/// Supported platforms:
/// - Vulkan (mostly)
/// - DX12
/// - Metal
///
/// This is a web and native feature.
const DEPTH32FLOAT_STENCIL8 = 1 << 24;
/// Enables BCn family of compressed textures. All BCn textures use 4x4 pixel blocks
/// with 8 or 16 bytes per block.
///
/// Compressed textures sacrifice some quality in exchange for significantly reduced
/// bandwidth usage.
///
/// Support for this feature guarantees availability of [`TextureUsages::COPY_SRC | TextureUsages::COPY_DST | TextureUsages::TEXTURE_BINDING`] for BCn formats.
/// [`Features::TEXTURE_ADAPTER_SPECIFIC_FORMAT_FEATURES`] may enable additional usages.
///
/// Supported Platforms:
/// - desktops
///
/// This is a web and native feature.
const TEXTURE_COMPRESSION_BC = 1 << 25;
/// Enables ETC family of compressed textures. All ETC textures use 4x4 pixel blocks.
/// ETC2 RGB and RGBA1 are 8 bytes per block. RTC2 RGBA8 and EAC are 16 bytes per block.
///
/// Compressed textures sacrifice some quality in exchange for significantly reduced
/// bandwidth usage.
///
/// Support for this feature guarantees availability of [`TextureUsages::COPY_SRC | TextureUsages::COPY_DST | TextureUsages::TEXTURE_BINDING`] for ETC2 formats.
/// [`Features::TEXTURE_ADAPTER_SPECIFIC_FORMAT_FEATURES`] may enable additional usages.
///
/// Supported Platforms:
/// - Vulkan on Intel
/// - Mobile (some)
///
/// This is a web and native feature.
const TEXTURE_COMPRESSION_ETC2 = 1 << 26;
/// Enables ASTC family of compressed textures. ASTC textures use pixel blocks varying from 4x4 to 12x12.
/// Blocks are always 16 bytes.
///
/// Compressed textures sacrifice some quality in exchange for significantly reduced
/// bandwidth usage.
///
/// Support for this feature guarantees availability of [`TextureUsages::COPY_SRC | TextureUsages::COPY_DST | TextureUsages::TEXTURE_BINDING`] for ASTC formats.
/// [`Features::TEXTURE_ADAPTER_SPECIFIC_FORMAT_FEATURES`] may enable additional usages.
///
/// Supported Platforms:
/// - Vulkan on Intel
/// - Mobile (some)
///
/// This is a web and native feature.
const TEXTURE_COMPRESSION_ASTC = 1 << 27;
// ? const TEXTURE_COMPRESSION_ASTC_HDR = 1 << 28; (https://github.com/gpuweb/gpuweb/issues/3856)
// 29..32 should be available but are for now occupied by native only texture related features
// TEXTURE_FORMAT_16BIT_NORM & TEXTURE_COMPRESSION_ASTC_HDR will most likely become web features as well
// TEXTURE_ADAPTER_SPECIFIC_FORMAT_FEATURES might not be necessary if we have all the texture features implemented
//
// ---- Restart Numbering for Native Features ---
//
// Native Features:
//
// Texture Formats:
/// Enables normalized `16-bit` texture formats.
///
/// Supported platforms:
/// - Vulkan
/// - DX12
/// - Metal
///
/// This is a native only feature.
const TEXTURE_FORMAT_16BIT_NORM = 1 << 29;
/// Enables ASTC HDR family of compressed textures.
///
/// Compressed textures sacrifice some quality in exchange for significantly reduced
/// bandwidth usage.
///
/// Support for this feature guarantees availability of [`TextureUsages::COPY_SRC | TextureUsages::COPY_DST | TextureUsages::TEXTURE_BINDING`] for BCn formats.
/// [`Features::TEXTURE_ADAPTER_SPECIFIC_FORMAT_FEATURES`] may enable additional usages.
///
/// Supported Platforms:
/// - Metal
/// - Vulkan
/// - OpenGL
///
/// This is a native only feature.
const TEXTURE_COMPRESSION_ASTC_HDR = 1 << 30;
/// Enables device specific texture format features.
///
/// See `TextureFormatFeatures` for a listing of the features in question.
///
/// By default only texture format properties as defined by the WebGPU specification are allowed.
/// Enabling this feature flag extends the features of each format to the ones supported by the current device.
/// Note that without this flag, read/write storage access is not allowed at all.
///
/// This extension does not enable additional formats.
///
/// This is a native only feature.
const TEXTURE_ADAPTER_SPECIFIC_FORMAT_FEATURES = 1 << 31;
// API:
/// Enables use of Pipeline Statistics Queries. These queries tell the count of various operations
/// performed between the start and stop call. Call [`RenderPassEncoder::begin_pipeline_statistics_query`] to start
/// a query, then call [`RenderPassEncoder::end_pipeline_statistics_query`] to stop one.
///
/// They must be resolved using [`CommandEncoder::resolve_query_sets`] into a buffer.
/// The rules on how these resolve into buffers are detailed in the documentation for [`PipelineStatisticsTypes`].
///
/// Supported Platforms:
/// - Vulkan
/// - DX12
///
/// This is a native only feature with a [proposal](https://github.com/gpuweb/gpuweb/blob/0008bd30da2366af88180b511a5d0d0c1dffbc36/proposals/pipeline-statistics-query.md) for the web.
const PIPELINE_STATISTICS_QUERY = 1 << 32;
/// Allows for timestamp queries inside render passes.
///
/// Implies [`Features::TIMESTAMP_QUERY`] is supported.
///
/// Supported platforms:
/// - Vulkan
/// - DX12
///
/// This is currently unimplemented on Metal.
/// When implemented, it will be supported on Metal on AMD and Intel GPUs, but not Apple GPUs.
///
/// This is a native only feature with a [proposal](https://github.com/gpuweb/gpuweb/blob/0008bd30da2366af88180b511a5d0d0c1dffbc36/proposals/timestamp-query-inside-passes.md) for the web.
const TIMESTAMP_QUERY_INSIDE_PASSES = 1 << 33;
/// Webgpu only allows the MAP_READ and MAP_WRITE buffer usage to be matched with
/// COPY_DST and COPY_SRC respectively. This removes this requirement.
///
/// This is only beneficial on systems that share memory between CPU and GPU. If enabled
/// on a system that doesn't, this can severely hinder performance. Only use if you understand
/// the consequences.
///
/// Supported platforms:
/// - Vulkan
/// - DX12
/// - Metal
///
/// This is a native only feature.
const MAPPABLE_PRIMARY_BUFFERS = 1 << 34;
/// Allows the user to create uniform arrays of textures in shaders:
///
/// ex.
/// - `var textures: binding_array<texture_2d<f32>, 10>` (WGSL)
/// - `uniform texture2D textures[10]` (GLSL)
///
/// If [`Features::STORAGE_RESOURCE_BINDING_ARRAY`] is supported as well as this, the user
/// may also create uniform arrays of storage textures.
///
/// ex.
/// - `var textures: array<texture_storage_2d<f32, write>, 10>` (WGSL)
/// - `uniform image2D textures[10]` (GLSL)
///
/// This capability allows them to exist and to be indexed by dynamically uniform
/// values.
///
/// Supported platforms:
/// - DX12
/// - Metal (with MSL 2.0+ on macOS 10.13+)
/// - Vulkan
///
/// This is a native only feature.
const TEXTURE_BINDING_ARRAY = 1 << 35;
/// Allows the user to create arrays of buffers in shaders:
///
/// ex.
/// - `var<uniform> buffer_array: array<MyBuffer, 10>` (WGSL)
/// - `uniform myBuffer { ... } buffer_array[10]` (GLSL)
///
/// This capability allows them to exist and to be indexed by dynamically uniform
/// values.
///
/// If [`Features::STORAGE_RESOURCE_BINDING_ARRAY`] is supported as well as this, the user
/// may also create arrays of storage buffers.
///
/// ex.
/// - `var<storage> buffer_array: array<MyBuffer, 10>` (WGSL)
/// - `buffer myBuffer { ... } buffer_array[10]` (GLSL)
///
/// Supported platforms:
/// - DX12
/// - Vulkan
///
/// This is a native only feature.
const BUFFER_BINDING_ARRAY = 1 << 36;
/// Allows the user to create uniform arrays of storage buffers or textures in shaders,
/// if resp. [`Features::BUFFER_BINDING_ARRAY`] or [`Features::TEXTURE_BINDING_ARRAY`]
/// is supported.
///
/// This capability allows them to exist and to be indexed by dynamically uniform
/// values.
///
/// Supported platforms:
/// - Metal (with MSL 2.2+ on macOS 10.13+)
/// - Vulkan
///
/// This is a native only feature.
const STORAGE_RESOURCE_BINDING_ARRAY = 1 << 37;
/// Allows shaders to index sampled texture and storage buffer resource arrays with dynamically non-uniform values:
///
/// ex. `texture_array[vertex_data]`
///
/// In order to use this capability, the corresponding GLSL extension must be enabled like so:
///
/// `#extension GL_EXT_nonuniform_qualifier : require`
///
/// and then used either as `nonuniformEXT` qualifier in variable declaration:
///
/// ex. `layout(location = 0) nonuniformEXT flat in int vertex_data;`
///
/// or as `nonuniformEXT` constructor:
///
/// ex. `texture_array[nonuniformEXT(vertex_data)]`
///
/// WGSL and HLSL do not need any extension.
///
/// Supported platforms:
/// - DX12
/// - Metal (with MSL 2.0+ on macOS 10.13+)
/// - Vulkan 1.2+ (or VK_EXT_descriptor_indexing)'s shaderSampledImageArrayNonUniformIndexing & shaderStorageBufferArrayNonUniformIndexing feature)
///
/// This is a native only feature.
const SAMPLED_TEXTURE_AND_STORAGE_BUFFER_ARRAY_NON_UNIFORM_INDEXING = 1 << 38;
/// Allows shaders to index uniform buffer and storage texture resource arrays with dynamically non-uniform values:
///
/// ex. `texture_array[vertex_data]`
///
/// In order to use this capability, the corresponding GLSL extension must be enabled like so:
///
/// `#extension GL_EXT_nonuniform_qualifier : require`
///
/// and then used either as `nonuniformEXT` qualifier in variable declaration:
///
/// ex. `layout(location = 0) nonuniformEXT flat in int vertex_data;`
///
/// or as `nonuniformEXT` constructor:
///
/// ex. `texture_array[nonuniformEXT(vertex_data)]`
///
/// WGSL and HLSL do not need any extension.
///
/// Supported platforms:
/// - DX12
/// - Metal (with MSL 2.0+ on macOS 10.13+)
/// - Vulkan 1.2+ (or VK_EXT_descriptor_indexing)'s shaderUniformBufferArrayNonUniformIndexing & shaderStorageTextureArrayNonUniformIndexing feature)
///
/// This is a native only feature.
const UNIFORM_BUFFER_AND_STORAGE_TEXTURE_ARRAY_NON_UNIFORM_INDEXING = 1 << 39;
/// Allows the user to create bind groups continaing arrays with less bindings than the BindGroupLayout.
///
/// This is a native only feature.
const PARTIALLY_BOUND_BINDING_ARRAY = 1 << 40;
/// Allows the user to call [`RenderPass::multi_draw_indirect`] and [`RenderPass::multi_draw_indexed_indirect`].
///
/// Allows multiple indirect calls to be dispatched from a single buffer.
///
/// Supported platforms:
/// - DX12
/// - Vulkan
/// - Metal (Emulated on top of `draw_indirect` and `draw_indexed_indirect`)
///
/// This is a native only feature.
///
/// [`RenderPass::multi_draw_indirect`]: ../wgpu/struct.RenderPass.html#method.multi_draw_indirect
/// [`RenderPass::multi_draw_indexed_indirect`]: ../wgpu/struct.RenderPass.html#method.multi_draw_indexed_indirect
const MULTI_DRAW_INDIRECT = 1 << 41;
/// Allows the user to call [`RenderPass::multi_draw_indirect_count`] and [`RenderPass::multi_draw_indexed_indirect_count`].
///
/// This allows the use of a buffer containing the actual number of draw calls.
///
/// Supported platforms:
/// - DX12
/// - Vulkan 1.2+ (or VK_KHR_draw_indirect_count)
///
/// This is a native only feature.
///
/// [`RenderPass::multi_draw_indirect_count`]: ../wgpu/struct.RenderPass.html#method.multi_draw_indirect_count
/// [`RenderPass::multi_draw_indexed_indirect_count`]: ../wgpu/struct.RenderPass.html#method.multi_draw_indexed_indirect_count
const MULTI_DRAW_INDIRECT_COUNT = 1 << 42;
/// Allows the use of push constants: small, fast bits of memory that can be updated
/// inside a [`RenderPass`].
///
/// Allows the user to call [`RenderPass::set_push_constants`], provide a non-empty array
/// to [`PipelineLayoutDescriptor`], and provide a non-zero limit to [`Limits::max_push_constant_size`].
///
/// A block of push constants can be declared with `layout(push_constant) uniform Name {..}` in shaders.
///
/// Supported platforms:
/// - DX12
/// - Vulkan
/// - Metal
/// - DX11 (emulated with uniforms)
/// - OpenGL (emulated with uniforms)
///
/// This is a native only feature.
///
/// [`RenderPass`]: ../wgpu/struct.RenderPass.html
/// [`PipelineLayoutDescriptor`]: ../wgpu/struct.PipelineLayoutDescriptor.html
/// [`RenderPass::set_push_constants`]: ../wgpu/struct.RenderPass.html#method.set_push_constants
const PUSH_CONSTANTS = 1 << 43;
/// Allows the use of [`AddressMode::ClampToBorder`] with a border color
/// of [`SamplerBorderColor::Zero`].
///
/// Supported platforms:
/// - DX12
/// - Vulkan
/// - Metal
/// - DX11
/// - OpenGL
///
/// This is a native only feature.
const ADDRESS_MODE_CLAMP_TO_ZERO = 1 << 44;
/// Allows the use of [`AddressMode::ClampToBorder`] with a border color
/// other than [`SamplerBorderColor::Zero`].
///
/// Supported platforms:
/// - DX12
/// - Vulkan
/// - Metal (macOS 10.12+ only)
/// - DX11
/// - OpenGL
///
/// This is a native only feature.
const ADDRESS_MODE_CLAMP_TO_BORDER = 1 << 45;
/// Allows the user to set [`PolygonMode::Line`] in [`PrimitiveState::polygon_mode`]
///
/// This allows drawing polygons/triangles as lines (wireframe) instead of filled
///
/// Supported platforms:
/// - DX12
/// - Vulkan
/// - Metal
///
/// This is a native only feature.
const POLYGON_MODE_LINE = 1 << 46;
/// Allows the user to set [`PolygonMode::Point`] in [`PrimitiveState::polygon_mode`]
///
/// This allows only drawing the vertices of polygons/triangles instead of filled
///
/// Supported platforms:
/// - DX12
/// - Vulkan
///
/// This is a native only feature.
const POLYGON_MODE_POINT = 1 << 47;
/// Allows the user to set a overestimation-conservative-rasterization in [`PrimitiveState::conservative`]
///
/// Processing of degenerate triangles/lines is hardware specific.
/// Only triangles are supported.
///
/// Supported platforms:
/// - Vulkan
///
/// This is a native only feature.
const CONSERVATIVE_RASTERIZATION = 1 << 48;
/// Enables bindings of writable storage buffers and textures visible to vertex shaders.
///
/// Note: some (tiled-based) platforms do not support vertex shaders with any side-effects.
///
/// Supported Platforms:
/// - All
///
/// This is a native only feature.
const VERTEX_WRITABLE_STORAGE = 1 << 49;
/// Enables clear to zero for textures.
///
/// Supported platforms:
/// - All
///
/// This is a native only feature.
const CLEAR_TEXTURE = 1 << 50;
/// Enables creating shader modules from SPIR-V binary data (unsafe).
///
/// SPIR-V data is not parsed or interpreted in any way; you can use
/// [`wgpu::make_spirv_raw!`] to check for alignment and magic number when converting from
/// raw bytes.
///
/// Supported platforms:
/// - Vulkan, in case shader's requested capabilities and extensions agree with
/// Vulkan implementation.
///
/// This is a native only feature.
const SPIRV_SHADER_PASSTHROUGH = 1 << 51;
/// Enables multiview render passes and `builtin(view_index)` in vertex shaders.
///
/// Supported platforms:
/// - Vulkan
/// - OpenGL (web only)
///
/// This is a native only feature.
const MULTIVIEW = 1 << 52;
/// Enables using 64-bit types for vertex attributes.
///
/// Requires SHADER_FLOAT64.
///
/// Supported Platforms: N/A
///
/// This is a native only feature.
const VERTEX_ATTRIBUTE_64BIT = 1 << 53;
// 54..59 available
// Shader:
/// Enables 64-bit floating point types in SPIR-V shaders.
///
/// Note: even when supported by GPU hardware, 64-bit floating point operations are
/// frequently between 16 and 64 _times_ slower than equivalent operations on 32-bit floats.
///
/// Supported Platforms:
/// - Vulkan
///
/// This is a native only feature.
const SHADER_F64 = 1 << 59;
/// Allows shaders to use i16. Not currently supported in naga, only available through `spirv-passthrough`.
///
/// Supported platforms:
/// - Vulkan
///
/// This is a native only feature.
const SHADER_I16 = 1 << 60;
/// Enables `builtin(primitive_index)` in fragment shaders.
///
/// Note: enables geometry processing for pipelines using the builtin.
/// This may come with a significant performance impact on some hardware.
/// Other pipelines are not affected.
///
/// Supported platforms:
/// - Vulkan
/// - DX11 (feature level 10+)
/// - DX12
/// - Metal (some)
/// - OpenGL (some)
///
/// This is a native only feature.
const SHADER_PRIMITIVE_INDEX = 1 << 61;
/// Allows shaders to use the `early_depth_test` attribute.
///
/// Supported platforms:
/// - GLES 3.1+
///
/// This is a native only feature.
const SHADER_EARLY_DEPTH_TEST = 1 << 62;
// 62..64 available
}
}
impl_bitflags!(Features);
impl Features {
/// Mask of all features which are part of the upstream WebGPU standard.
pub const fn all_webgpu_mask() -> Self {
Self::from_bits_truncate(0x0000_0000_0000_FFFF)
}
/// Mask of all features that are only available when targeting native (not web).
pub const fn all_native_mask() -> Self {
Self::from_bits_truncate(0xFFFF_FFFF_FFFF_0000)
}
}
/// Represents the sets of limits an adapter/device supports.
///
/// We provide three different defaults.
/// - [`Limits::downlevel_defaults()`]. This is a set of limits that is guaranteed to work on almost
/// all backends, including "downlevel" backends such as OpenGL and D3D11, other than WebGL. For
/// most applications we recommend using these limits, assuming they are high enough for your
/// application, and you do not intent to support WebGL.
/// - [`Limits::downlevel_webgl2_defaults()`] This is a set of limits that is lower even than the
/// [`downlevel_defaults()`], configured to be low enough to support running in the browser using
/// WebGL2.
/// - [`Limits::default()`]. This is the set of limits that is guaranteed to work on all modern
/// backends and is guaranteed to be supported by WebGPU. Applications needing more modern
/// features can use this as a reasonable set of limits if they are targeting only desktop and
/// modern mobile devices.
///
/// We recommend starting with the most restrictive limits you can and manually increasing the
/// limits you need boosted. This will let you stay running on all hardware that supports the limits
/// you need.
///
/// Limits "better" than the default must be supported by the adapter and requested when requesting
/// a device. If limits "better" than the adapter supports are requested, requesting a device will
/// panic. Once a device is requested, you may only use resources up to the limits requested _even_
/// if the adapter supports "better" limits.
///
/// Requesting limits that are "better" than you need may cause performance to decrease because the
/// implementation needs to support more than is needed. You should ideally only request exactly
/// what you need.
///
/// Corresponds to [WebGPU `GPUSupportedLimits`](
/// https://gpuweb.github.io/gpuweb/#gpusupportedlimits).
///
/// [`downlevel_defaults()`]: Limits::downlevel_defaults
#[repr(C)]
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "camelCase", default))]
pub struct Limits {
/// Maximum allowed value for the `size.width` of a texture created with `TextureDimension::D1`.
/// Defaults to 8192. Higher is "better".
#[cfg_attr(feature = "serde", serde(rename = "maxTextureDimension1D"))]
pub max_texture_dimension_1d: u32,
/// Maximum allowed value for the `size.width` and `size.height` of a texture created with `TextureDimension::D2`.
/// Defaults to 8192. Higher is "better".
#[cfg_attr(feature = "serde", serde(rename = "maxTextureDimension2D"))]
pub max_texture_dimension_2d: u32,
/// Maximum allowed value for the `size.width`, `size.height`, and `size.depth_or_array_layers`
/// of a texture created with `TextureDimension::D3`.
/// Defaults to 2048. Higher is "better".
#[cfg_attr(feature = "serde", serde(rename = "maxTextureDimension3D"))]
pub max_texture_dimension_3d: u32,
/// Maximum allowed value for the `size.depth_or_array_layers` of a texture created with `TextureDimension::D2`.
/// Defaults to 256. Higher is "better".
pub max_texture_array_layers: u32,
/// Amount of bind groups that can be attached to a pipeline at the same time. Defaults to 4. Higher is "better".
pub max_bind_groups: u32,
/// Maximum binding index allowed in `create_bind_group_layout`. Defaults to 640.
pub max_bindings_per_bind_group: u32,
/// Amount of uniform buffer bindings that can be dynamic in a single pipeline. Defaults to 8. Higher is "better".
pub max_dynamic_uniform_buffers_per_pipeline_layout: u32,
/// Amount of storage buffer bindings that can be dynamic in a single pipeline. Defaults to 4. Higher is "better".
pub max_dynamic_storage_buffers_per_pipeline_layout: u32,
/// Amount of sampled textures visible in a single shader stage. Defaults to 16. Higher is "better".
pub max_sampled_textures_per_shader_stage: u32,
/// Amount of samplers visible in a single shader stage. Defaults to 16. Higher is "better".
pub max_samplers_per_shader_stage: u32,
/// Amount of storage buffers visible in a single shader stage. Defaults to 8. Higher is "better".
pub max_storage_buffers_per_shader_stage: u32,
/// Amount of storage textures visible in a single shader stage. Defaults to 8. Higher is "better".
pub max_storage_textures_per_shader_stage: u32,
/// Amount of uniform buffers visible in a single shader stage. Defaults to 12. Higher is "better".
pub max_uniform_buffers_per_shader_stage: u32,
/// Maximum size in bytes of a binding to a uniform buffer. Defaults to 64 KB. Higher is "better".
pub max_uniform_buffer_binding_size: u32,
/// Maximum size in bytes of a binding to a storage buffer. Defaults to 128 MB. Higher is "better".
pub max_storage_buffer_binding_size: u32,
/// Maximum length of `VertexState::buffers` when creating a `RenderPipeline`.
/// Defaults to 8. Higher is "better".
pub max_vertex_buffers: u32,
/// A limit above which buffer allocations are guaranteed to fail.
///
/// Buffer allocations below the maximum buffer size may not succeed depending on available memory,
/// fragmentation and other factors.
pub max_buffer_size: u64,
/// Maximum length of `VertexBufferLayout::attributes`, summed over all `VertexState::buffers`,
/// when creating a `RenderPipeline`.
/// Defaults to 16. Higher is "better".
pub max_vertex_attributes: u32,
/// Maximum value for `VertexBufferLayout::array_stride` when creating a `RenderPipeline`.
/// Defaults to 2048. Higher is "better".
pub max_vertex_buffer_array_stride: u32,
/// Required `BufferBindingType::Uniform` alignment for `BufferBinding::offset`
/// when creating a `BindGroup`, or for `set_bind_group` `dynamicOffsets`.
/// Defaults to 256. Lower is "better".
pub min_uniform_buffer_offset_alignment: u32,
/// Required `BufferBindingType::Storage` alignment for `BufferBinding::offset`
/// when creating a `BindGroup`, or for `set_bind_group` `dynamicOffsets`.
/// Defaults to 256. Lower is "better".
pub min_storage_buffer_offset_alignment: u32,
/// Maximum allowed number of components (scalars) of input or output locations for
/// inter-stage communication (vertex outputs to fragment inputs). Defaults to 60.
pub max_inter_stage_shader_components: u32,
/// Maximum number of bytes used for workgroup memory in a compute entry point. Defaults to
/// 16352.
pub max_compute_workgroup_storage_size: u32,
/// Maximum value of the product of the `workgroup_size` dimensions for a compute entry-point.
/// Defaults to 256.
pub max_compute_invocations_per_workgroup: u32,
/// The maximum value of the workgroup_size X dimension for a compute stage `ShaderModule` entry-point.
/// Defaults to 256.
pub max_compute_workgroup_size_x: u32,
/// The maximum value of the workgroup_size Y dimension for a compute stage `ShaderModule` entry-point.
/// Defaults to 256.
pub max_compute_workgroup_size_y: u32,
/// The maximum value of the workgroup_size Z dimension for a compute stage `ShaderModule` entry-point.
/// Defaults to 64.
pub max_compute_workgroup_size_z: u32,
/// The maximum value for each dimension of a `ComputePass::dispatch(x, y, z)` operation.
/// Defaults to 65535.
pub max_compute_workgroups_per_dimension: u32,
/// Amount of storage available for push constants in bytes. Defaults to 0. Higher is "better".
/// Requesting more than 0 during device creation requires [`Features::PUSH_CONSTANTS`] to be enabled.
///
/// Expect the size to be:
/// - Vulkan: 128-256 bytes
/// - DX12: 256 bytes
/// - Metal: 4096 bytes
/// - DX11 & OpenGL don't natively support push constants, and are emulated with uniforms,
/// so this number is less useful but likely 256.
pub max_push_constant_size: u32,
}
impl Default for Limits {
fn default() -> Self {
Self {
max_texture_dimension_1d: 8192,
max_texture_dimension_2d: 8192,
max_texture_dimension_3d: 2048,
max_texture_array_layers: 256,
max_bind_groups: 4,
max_bindings_per_bind_group: 640,
max_dynamic_uniform_buffers_per_pipeline_layout: 8,
max_dynamic_storage_buffers_per_pipeline_layout: 4,
max_sampled_textures_per_shader_stage: 16,
max_samplers_per_shader_stage: 16,
max_storage_buffers_per_shader_stage: 8,
max_storage_textures_per_shader_stage: 4,
max_uniform_buffers_per_shader_stage: 12,
max_uniform_buffer_binding_size: 64 << 10,
max_storage_buffer_binding_size: 128 << 20,
max_vertex_buffers: 8,
max_buffer_size: 1 << 28,
max_vertex_attributes: 16,
max_vertex_buffer_array_stride: 2048,
min_uniform_buffer_offset_alignment: 256,
min_storage_buffer_offset_alignment: 256,
max_inter_stage_shader_components: 60,
max_compute_workgroup_storage_size: 16384,
max_compute_invocations_per_workgroup: 256,
max_compute_workgroup_size_x: 256,
max_compute_workgroup_size_y: 256,
max_compute_workgroup_size_z: 64,
max_compute_workgroups_per_dimension: 65535,
max_push_constant_size: 0,
}
}
}
impl Limits {
/// These default limits are guaranteed to be compatible with GLES-3.1, and D3D11
pub fn downlevel_defaults() -> Self {
Self {
max_texture_dimension_1d: 2048,
max_texture_dimension_2d: 2048,
max_texture_dimension_3d: 256,
max_texture_array_layers: 256,
max_bind_groups: 4,
max_bindings_per_bind_group: 640,
max_dynamic_uniform_buffers_per_pipeline_layout: 8,
max_dynamic_storage_buffers_per_pipeline_layout: 4,
max_sampled_textures_per_shader_stage: 16,
max_samplers_per_shader_stage: 16,
max_storage_buffers_per_shader_stage: 4,
max_storage_textures_per_shader_stage: 4,
max_uniform_buffers_per_shader_stage: 12,
max_uniform_buffer_binding_size: 16 << 10,
max_storage_buffer_binding_size: 128 << 20,
max_vertex_buffers: 8,
max_vertex_attributes: 16,
max_vertex_buffer_array_stride: 2048,
max_push_constant_size: 0,
min_uniform_buffer_offset_alignment: 256,
min_storage_buffer_offset_alignment: 256,
max_inter_stage_shader_components: 60,
max_compute_workgroup_storage_size: 16352,
max_compute_invocations_per_workgroup: 256,
max_compute_workgroup_size_x: 256,
max_compute_workgroup_size_y: 256,
max_compute_workgroup_size_z: 64,
max_compute_workgroups_per_dimension: 65535,
max_buffer_size: 1 << 28,
}
}
/// These default limits are guaranteed to be compatible with GLES-3.0, and D3D11, and WebGL2
pub fn downlevel_webgl2_defaults() -> Self {
Self {
max_uniform_buffers_per_shader_stage: 11,
max_storage_buffers_per_shader_stage: 0,
max_storage_textures_per_shader_stage: 0,
max_dynamic_storage_buffers_per_pipeline_layout: 0,
max_storage_buffer_binding_size: 0,
max_vertex_buffer_array_stride: 255,
max_compute_workgroup_storage_size: 0,
max_compute_invocations_per_workgroup: 0,
max_compute_workgroup_size_x: 0,
max_compute_workgroup_size_y: 0,
max_compute_workgroup_size_z: 0,
max_compute_workgroups_per_dimension: 0,
// Most of the values should be the same as the downlevel defaults
..Self::downlevel_defaults()
}
}
/// Modify the current limits to use the resolution limits of the other.
///
/// This is useful because the swapchain might need to be larger than any other image in the application.
///
/// If your application only needs 512x512, you might be running on a 4k display and need extremely high resolution limits.
pub fn using_resolution(self, other: Self) -> Self {
Self {
max_texture_dimension_1d: other.max_texture_dimension_1d,
max_texture_dimension_2d: other.max_texture_dimension_2d,
max_texture_dimension_3d: other.max_texture_dimension_3d,
..self
}
}
/// Modify the current limits to use the buffer alignment limits of the adapter.
///
/// This is useful for when you'd like to dynamically use the "best" supported buffer alignments.
pub fn using_alignment(self, other: Self) -> Self {
Self {
min_uniform_buffer_offset_alignment: other.min_uniform_buffer_offset_alignment,
min_storage_buffer_offset_alignment: other.min_storage_buffer_offset_alignment,
..self
}
}
/// Compares every limits within self is within the limits given in `allowed`.
///
/// If you need detailed information on failures, look at [`Limits::check_limits_with_fail_fn`].
pub fn check_limits(&self, allowed: &Self) -> bool {
let mut within = true;
self.check_limits_with_fail_fn(allowed, true, |_, _, _| within = false);
within
}
/// Compares every limits within self is within the limits given in `allowed`.
/// For an easy to use binary choice, use [`Limits::check_limits`].
///
/// If a value is not within the allowed limit, this function calls the `fail_fn`
/// with the:
/// - limit name
/// - self's limit
/// - allowed's limit.
///
/// If fatal is true, a single failure bails out the comparison after a single failure.
pub fn check_limits_with_fail_fn(
&self,
allowed: &Self,
fatal: bool,
mut fail_fn: impl FnMut(&'static str, u64, u64),
) {
use std::cmp::Ordering;
macro_rules! compare {
($name:ident, $ordering:ident) => {
match self.$name.cmp(&allowed.$name) {
Ordering::$ordering | Ordering::Equal => (),
_ => {
fail_fn(stringify!($name), self.$name as u64, allowed.$name as u64);
if fatal {
return;
}
}
}
};
}
compare!(max_texture_dimension_1d, Less);
compare!(max_texture_dimension_2d, Less);
compare!(max_texture_dimension_3d, Less);
compare!(max_texture_array_layers, Less);
compare!(max_bind_groups, Less);
compare!(max_dynamic_uniform_buffers_per_pipeline_layout, Less);
compare!(max_dynamic_storage_buffers_per_pipeline_layout, Less);
compare!(max_sampled_textures_per_shader_stage, Less);
compare!(max_samplers_per_shader_stage, Less);
compare!(max_storage_buffers_per_shader_stage, Less);
compare!(max_storage_textures_per_shader_stage, Less);
compare!(max_uniform_buffers_per_shader_stage, Less);
compare!(max_uniform_buffer_binding_size, Less);
compare!(max_storage_buffer_binding_size, Less);
compare!(max_vertex_buffers, Less);
compare!(max_vertex_attributes, Less);
compare!(max_vertex_buffer_array_stride, Less);
compare!(max_push_constant_size, Less);
compare!(min_uniform_buffer_offset_alignment, Greater);
compare!(min_storage_buffer_offset_alignment, Greater);
compare!(max_inter_stage_shader_components, Less);
compare!(max_compute_workgroup_storage_size, Less);
compare!(max_compute_invocations_per_workgroup, Less);
compare!(max_compute_workgroup_size_x, Less);
compare!(max_compute_workgroup_size_y, Less);
compare!(max_compute_workgroup_size_z, Less);
compare!(max_compute_workgroups_per_dimension, Less);
compare!(max_buffer_size, Less);
}
}
/// Represents the sets of additional limits on an adapter,
/// which take place when running on downlevel backends.
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct DownlevelLimits {}
#[allow(unknown_lints)] // derivable_impls is nightly only currently
#[allow(clippy::derivable_impls)]
impl Default for DownlevelLimits {
fn default() -> Self {
DownlevelLimits {}
}
}
/// Lists various ways the underlying platform does not conform to the WebGPU standard.
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct DownlevelCapabilities {
/// Combined boolean flags.
pub flags: DownlevelFlags,
/// Additional limits
pub limits: DownlevelLimits,
/// Which collections of features shaders support. Defined in terms of D3D's shader models.
pub shader_model: ShaderModel,
}
impl Default for DownlevelCapabilities {
fn default() -> Self {
Self {
flags: DownlevelFlags::all(),
limits: DownlevelLimits::default(),
shader_model: ShaderModel::Sm5,
}
}
}
impl DownlevelCapabilities {
/// Returns true if the underlying platform offers complete support of the baseline WebGPU standard.
///
/// If this returns false, some parts of the API will result in validation errors where they would not normally.
/// These parts can be determined by the values in this structure.
pub fn is_webgpu_compliant(&self) -> bool {
self.flags.contains(DownlevelFlags::compliant())
&& self.limits == DownlevelLimits::default()
&& self.shader_model >= ShaderModel::Sm5
}
}
bitflags::bitflags! {
/// Binary flags listing features that may or may not be present on downlevel adapters.
///
/// A downlevel adapter is a GPU adapter that WGPU supports, but with potentially limited
/// features, due to the lack of hardware feature support.
///
/// Flags that are **not** present for a downlevel adapter or device usually indicates
/// non-compliance with the WebGPU specification, but not always.
///
/// You can check whether a set of flags is compliant through the
/// [`DownlevelCapabilities::is_webgpu_compliant()`] function.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct DownlevelFlags: u32 {
/// The device supports compiling and using compute shaders.
///
/// DX11 on FL10 level hardware, WebGL2, and GLES3.0 devices do not support compute.
const COMPUTE_SHADERS = 1 << 0;
/// Supports binding storage buffers and textures to fragment shaders.
const FRAGMENT_WRITABLE_STORAGE = 1 << 1;
/// Supports indirect drawing and dispatching.
///
/// DX11 on FL10 level hardware, WebGL2, and GLES 3.0 devices do not support indirect.
const INDIRECT_EXECUTION = 1 << 2;
/// Supports non-zero `base_vertex` parameter to indexed draw calls.
const BASE_VERTEX = 1 << 3;
/// Supports reading from a depth/stencil buffer while using as a read-only depth/stencil
/// attachment.
///
/// The WebGL2 and GLES backends do not support RODS.
const READ_ONLY_DEPTH_STENCIL = 1 << 4;
/// Supports textures with mipmaps which have a non power of two size.
const NON_POWER_OF_TWO_MIPMAPPED_TEXTURES = 1 << 5;
/// Supports textures that are cube arrays.
const CUBE_ARRAY_TEXTURES = 1 << 6;
/// Supports comparison samplers.
const COMPARISON_SAMPLERS = 1 << 7;
/// Supports different blend operations per color attachment.
const INDEPENDENT_BLEND = 1 << 8;
/// Supports storage buffers in vertex shaders.
const VERTEX_STORAGE = 1 << 9;
/// Supports samplers with anisotropic filtering. Note this isn't actually required by
/// WebGPU, the implementation is allowed to completely ignore aniso clamp. This flag is
/// here for native backends so they can communicate to the user of aniso is enabled.
///
/// All backends and all devices support anisotropic filtering.
const ANISOTROPIC_FILTERING = 1 << 10;
/// Supports storage buffers in fragment shaders.
const FRAGMENT_STORAGE = 1 << 11;
/// Supports sample-rate shading.
const MULTISAMPLED_SHADING = 1 << 12;
/// Supports copies between depth textures and buffers.
///
/// GLES/WebGL don't support this.
const DEPTH_TEXTURE_AND_BUFFER_COPIES = 1 << 13;
/// Supports all the texture usages described in WebGPU. If this isn't supported, you
/// should call `get_texture_format_features` to get how you can use textures of a given format
const WEBGPU_TEXTURE_FORMAT_SUPPORT = 1 << 14;
/// Supports buffer bindings with sizes that aren't a multiple of 16.
///
/// WebGL doesn't support this.
const BUFFER_BINDINGS_NOT_16_BYTE_ALIGNED = 1 << 15;
/// Supports buffers to combine [`BufferUsages::INDEX`] with usages other than [`BufferUsages::COPY_DST`] and [`BufferUsages::COPY_SRC`].
/// Furthermore, in absence of this feature it is not allowed to copy index buffers from/to buffers with a set of usage flags containing
/// [`BufferUsages::VERTEX`]/[`BufferUsages::UNIFORM`]/[`BufferUsages::STORAGE`] or [`BufferUsages::INDIRECT`].
///
/// WebGL doesn't support this.
const UNRESTRICTED_INDEX_BUFFER = 1 << 16;
/// Supports full 32-bit range indices (2^32-1 as opposed to 2^24-1 without this flag)
///
/// Corresponds to Vulkan's `VkPhysicalDeviceFeatures.fullDrawIndexUint32`
const FULL_DRAW_INDEX_UINT32 = 1 << 17;
/// Supports depth bias clamping
///
/// Corresponds to Vulkan's `VkPhysicalDeviceFeatures.depthBiasClamp`
const DEPTH_BIAS_CLAMP = 1 << 18;
/// Supports specifying which view format values are allowed when create_view() is called on a texture.
///
/// The WebGL and GLES backends doesn't support this.
const VIEW_FORMATS = 1 << 19;
/// With this feature not present, there are the following restrictions on `Queue::copy_external_image_to_texture`:
/// - The source must not be [`web_sys::OffscreenCanvas`]
/// - [`ImageCopyExternalImage::origin`] must be zero.
/// - [`ImageCopyTextureTagged::color_space`] must be srgb.
/// - If the source is an [`web_sys::ImageBitmap`]:
/// - [`ImageCopyExternalImage::flip_y`] must be false.
/// - [`ImageCopyTextureTagged::premultiplied_alpha`] must be false.
///
/// WebGL doesn't support this. WebGPU does.
const UNRESTRICTED_EXTERNAL_TEXTURE_COPIES = 1 << 20;
/// Supports specifying which view formats are allowed when calling create_view on the texture returned by get_current_texture.
///
/// The GLES/WebGL and Vulkan on Android doesn't support this.
const SURFACE_VIEW_FORMATS = 1 << 21;
}
}
impl_bitflags!(DownlevelFlags);
impl DownlevelFlags {
/// All flags that indicate if the backend is WebGPU compliant
pub const fn compliant() -> Self {
// We use manual bit twiddling to make this a const fn as `Sub` and `.remove` aren't const
// WebGPU doesn't actually require aniso
Self::from_bits_truncate(Self::all().bits() & !Self::ANISOTROPIC_FILTERING.bits())
}
}
/// Collections of shader features a device supports if they support less than WebGPU normally allows.
// TODO: Fill out the differences between shader models more completely
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum ShaderModel {
/// Extremely limited shaders, including a total instruction limit.
Sm2,
/// Missing minor features and storage images.
Sm4,
/// WebGPU supports shader module 5.
Sm5,
}
/// Supported physical device types.
#[repr(u8)]
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "trace", derive(serde::Serialize))]
#[cfg_attr(feature = "replay", derive(serde::Deserialize))]
pub enum DeviceType {
/// Other or Unknown.
Other,
/// Integrated GPU with shared CPU/GPU memory.
IntegratedGpu,
/// Discrete GPU with separate CPU/GPU memory.
DiscreteGpu,
/// Virtual / Hosted.
VirtualGpu,
/// Cpu / Software Rendering.
Cpu,
}
//TODO: convert `vendor` and `device` to `u32`
/// Information about an adapter.
#[derive(Clone, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "trace", derive(serde::Serialize))]
#[cfg_attr(feature = "replay", derive(serde::Deserialize))]
pub struct AdapterInfo {
/// Adapter name
pub name: String,
/// Vendor PCI id of the adapter
///
/// If the vendor has no PCI id, then this value will be the backend's vendor id equivalent. On Vulkan,
/// Mesa would have a vendor id equivalent to it's `VkVendorId` value.
pub vendor: usize,
/// PCI id of the adapter
pub device: usize,
/// Type of device
pub device_type: DeviceType,
/// Driver name
pub driver: String,
/// Driver info
pub driver_info: String,
/// Backend used for device
pub backend: Backend,
}
/// Describes a [`Device`](../wgpu/struct.Device.html).
///
/// Corresponds to [WebGPU `GPUDeviceDescriptor`](
/// https://gpuweb.github.io/gpuweb/#gpudevicedescriptor).
#[repr(C)]
#[derive(Clone, Debug, Default)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct DeviceDescriptor<L> {
/// Debug label for the device.
pub label: L,
/// Features that the device should support. If any feature is not supported by
/// the adapter, creating a device will panic.
pub features: Features,
/// Limits that the device should support. If any limit is "better" than the limit exposed by
/// the adapter, creating a device will panic.
pub limits: Limits,
}
impl<L> DeviceDescriptor<L> {
/// Takes a closure and maps the label of the device descriptor into another.
pub fn map_label<K>(&self, fun: impl FnOnce(&L) -> K) -> DeviceDescriptor<K> {
DeviceDescriptor {
label: fun(&self.label),
features: self.features,
limits: self.limits.clone(),
}
}
}
bitflags::bitflags! {
/// Describes the shader stages that a binding will be visible from.
///
/// These can be combined so something that is visible from both vertex and fragment shaders can be defined as:
///
/// `ShaderStages::VERTEX | ShaderStages::FRAGMENT`
///
/// Corresponds to [WebGPU `GPUShaderStageFlags`](
/// https://gpuweb.github.io/gpuweb/#typedefdef-gpushaderstageflags).
#[repr(transparent)]
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct ShaderStages: u32 {
/// Binding is not visible from any shader stage.
const NONE = 0;
/// Binding is visible from the vertex shader of a render pipeline.
const VERTEX = 1 << 0;
/// Binding is visible from the fragment shader of a render pipeline.
const FRAGMENT = 1 << 1;
/// Binding is visible from the compute shader of a compute pipeline.
const COMPUTE = 1 << 2;
/// Binding is visible from the vertex and fragment shaders of a render pipeline.
const VERTEX_FRAGMENT = Self::VERTEX.bits() | Self::FRAGMENT.bits();
}
}
impl_bitflags!(ShaderStages);
/// Dimensions of a particular texture view.
///
/// Corresponds to [WebGPU `GPUTextureViewDimension`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gputextureviewdimension).
#[repr(C)]
#[derive(Copy, Clone, Debug, Default, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum TextureViewDimension {
/// A one dimensional texture. `texture_1d` in WGSL and `texture1D` in GLSL.
#[cfg_attr(feature = "serde", serde(rename = "1d"))]
D1,
/// A two dimensional texture. `texture_2d` in WGSL and `texture2D` in GLSL.
#[cfg_attr(feature = "serde", serde(rename = "2d"))]
#[default]
D2,
/// A two dimensional array texture. `texture_2d_array` in WGSL and `texture2DArray` in GLSL.
#[cfg_attr(feature = "serde", serde(rename = "2d-array"))]
D2Array,
/// A cubemap texture. `texture_cube` in WGSL and `textureCube` in GLSL.
#[cfg_attr(feature = "serde", serde(rename = "cube"))]
Cube,
/// A cubemap array texture. `texture_cube_array` in WGSL and `textureCubeArray` in GLSL.
#[cfg_attr(feature = "serde", serde(rename = "cube-array"))]
CubeArray,
/// A three dimensional texture. `texture_3d` in WGSL and `texture3D` in GLSL.
#[cfg_attr(feature = "serde", serde(rename = "3d"))]
D3,
}
impl TextureViewDimension {
/// Get the texture dimension required of this texture view dimension.
pub fn compatible_texture_dimension(self) -> TextureDimension {
match self {
Self::D1 => TextureDimension::D1,
Self::D2 | Self::D2Array | Self::Cube | Self::CubeArray => TextureDimension::D2,
Self::D3 => TextureDimension::D3,
}
}
}
/// Alpha blend factor.
///
/// Alpha blending is very complicated: see the OpenGL or Vulkan spec for more information.
///
/// Corresponds to [WebGPU `GPUBlendFactor`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gpublendfactor).
#[repr(C)]
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "kebab-case"))]
pub enum BlendFactor {
/// 0.0
Zero = 0,
/// 1.0
One = 1,
/// S.component
Src = 2,
/// 1.0 - S.component
OneMinusSrc = 3,
/// S.alpha
SrcAlpha = 4,
/// 1.0 - S.alpha
OneMinusSrcAlpha = 5,
/// D.component
Dst = 6,
/// 1.0 - D.component
OneMinusDst = 7,
/// D.alpha
DstAlpha = 8,
/// 1.0 - D.alpha
OneMinusDstAlpha = 9,
/// min(S.alpha, 1.0 - D.alpha)
SrcAlphaSaturated = 10,
/// Constant
Constant = 11,
/// 1.0 - Constant
OneMinusConstant = 12,
}
/// Alpha blend operation.
///
/// Alpha blending is very complicated: see the OpenGL or Vulkan spec for more information.
///
/// Corresponds to [WebGPU `GPUBlendOperation`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gpublendoperation).
#[repr(C)]
#[derive(Copy, Clone, Debug, Default, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "kebab-case"))]
pub enum BlendOperation {
/// Src + Dst
#[default]
Add = 0,
/// Src - Dst
Subtract = 1,
/// Dst - Src
ReverseSubtract = 2,
/// min(Src, Dst)
Min = 3,
/// max(Src, Dst)
Max = 4,
}
/// Describes a blend component of a [`BlendState`].
///
/// Corresponds to [WebGPU `GPUBlendComponent`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpublendcomponent).
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "camelCase"))]
pub struct BlendComponent {
/// Multiplier for the source, which is produced by the fragment shader.
pub src_factor: BlendFactor,
/// Multiplier for the destination, which is stored in the target.
pub dst_factor: BlendFactor,
/// The binary operation applied to the source and destination,
/// multiplied by their respective factors.
pub operation: BlendOperation,
}
impl BlendComponent {
/// Default blending state that replaces destination with the source.
pub const REPLACE: Self = Self {
src_factor: BlendFactor::One,
dst_factor: BlendFactor::Zero,
operation: BlendOperation::Add,
};
/// Blend state of (1 * src) + ((1 - src_alpha) * dst)
pub const OVER: Self = Self {
src_factor: BlendFactor::One,
dst_factor: BlendFactor::OneMinusSrcAlpha,
operation: BlendOperation::Add,
};
/// Returns true if the state relies on the constant color, which is
/// set independently on a render command encoder.
pub fn uses_constant(&self) -> bool {
match (self.src_factor, self.dst_factor) {
(BlendFactor::Constant, _)
| (BlendFactor::OneMinusConstant, _)
| (_, BlendFactor::Constant)
| (_, BlendFactor::OneMinusConstant) => true,
(_, _) => false,
}
}
}
impl Default for BlendComponent {
fn default() -> Self {
Self::REPLACE
}
}
/// Describe the blend state of a render pipeline,
/// within [`ColorTargetState`].
///
/// See the OpenGL or Vulkan spec for more information.
///
/// Corresponds to [WebGPU `GPUBlendState`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpublendstate).
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "camelCase"))]
pub struct BlendState {
/// Color equation.
pub color: BlendComponent,
/// Alpha equation.
pub alpha: BlendComponent,
}
impl BlendState {
/// Blend mode that does no color blending, just overwrites the output with the contents of the shader.
pub const REPLACE: Self = Self {
color: BlendComponent::REPLACE,
alpha: BlendComponent::REPLACE,
};
/// Blend mode that does standard alpha blending with non-premultiplied alpha.
pub const ALPHA_BLENDING: Self = Self {
color: BlendComponent {
src_factor: BlendFactor::SrcAlpha,
dst_factor: BlendFactor::OneMinusSrcAlpha,
operation: BlendOperation::Add,
},
alpha: BlendComponent::OVER,
};
/// Blend mode that does standard alpha blending with premultiplied alpha.
pub const PREMULTIPLIED_ALPHA_BLENDING: Self = Self {
color: BlendComponent::OVER,
alpha: BlendComponent::OVER,
};
}
/// Describes the color state of a render pipeline.
///
/// Corresponds to [WebGPU `GPUColorTargetState`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpucolortargetstate).
#[repr(C)]
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "camelCase"))]
pub struct ColorTargetState {
/// The [`TextureFormat`] of the image that this pipeline will render to. Must match the the format
/// of the corresponding color attachment in [`CommandEncoder::begin_render_pass`][CEbrp]
///
/// [CEbrp]: ../wgpu/struct.CommandEncoder.html#method.begin_render_pass
pub format: TextureFormat,
/// The blending that is used for this pipeline.
#[cfg_attr(feature = "serde", serde(default))]
pub blend: Option<BlendState>,
/// Mask which enables/disables writes to different color/alpha channel.
#[cfg_attr(feature = "serde", serde(default))]
pub write_mask: ColorWrites,
}
impl From<TextureFormat> for ColorTargetState {
fn from(format: TextureFormat) -> Self {
Self {
format,
blend: None,
write_mask: ColorWrites::ALL,
}
}
}
/// Primitive type the input mesh is composed of.
///
/// Corresponds to [WebGPU `GPUPrimitiveTopology`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gpuprimitivetopology).
#[repr(C)]
#[derive(Copy, Clone, Debug, Default, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "kebab-case"))]
pub enum PrimitiveTopology {
/// Vertex data is a list of points. Each vertex is a new point.
PointList = 0,
/// Vertex data is a list of lines. Each pair of vertices composes a new line.
///
/// Vertices `0 1 2 3` create two lines `0 1` and `2 3`
LineList = 1,
/// Vertex data is a strip of lines. Each set of two adjacent vertices form a line.
///
/// Vertices `0 1 2 3` create three lines `0 1`, `1 2`, and `2 3`.
LineStrip = 2,
/// Vertex data is a list of triangles. Each set of 3 vertices composes a new triangle.
///
/// Vertices `0 1 2 3 4 5` create two triangles `0 1 2` and `3 4 5`
#[default]
TriangleList = 3,
/// Vertex data is a triangle strip. Each set of three adjacent vertices form a triangle.
///
/// Vertices `0 1 2 3 4 5` creates four triangles `0 1 2`, `2 1 3`, `2 3 4`, and `4 3 5`
TriangleStrip = 4,
}
impl PrimitiveTopology {
/// Returns true for strip topologies.
pub fn is_strip(&self) -> bool {
match *self {
Self::PointList | Self::LineList | Self::TriangleList => false,
Self::LineStrip | Self::TriangleStrip => true,
}
}
}
/// Vertex winding order which classifies the "front" face of a triangle.
///
/// Corresponds to [WebGPU `GPUFrontFace`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gpufrontface).
#[repr(C)]
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "kebab-case"))]
pub enum FrontFace {
/// Triangles with vertices in counter clockwise order are considered the front face.
///
/// This is the default with right handed coordinate spaces.
#[default]
Ccw = 0,
/// Triangles with vertices in clockwise order are considered the front face.
///
/// This is the default with left handed coordinate spaces.
Cw = 1,
}
/// Face of a vertex.
///
/// Corresponds to [WebGPU `GPUCullMode`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gpucullmode),
/// except that the `"none"` value is represented using `Option<Face>` instead.
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "kebab-case"))]
pub enum Face {
/// Front face
Front = 0,
/// Back face
Back = 1,
}
/// Type of drawing mode for polygons
#[repr(C)]
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "kebab-case"))]
pub enum PolygonMode {
/// Polygons are filled
#[default]
Fill = 0,
/// Polygons are drawn as line segments
Line = 1,
/// Polygons are drawn as points
Point = 2,
}
/// Describes the state of primitive assembly and rasterization in a render pipeline.
///
/// Corresponds to [WebGPU `GPUPrimitiveState`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpuprimitivestate).
#[repr(C)]
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "camelCase"))]
pub struct PrimitiveState {
/// The primitive topology used to interpret vertices.
pub topology: PrimitiveTopology,
/// When drawing strip topologies with indices, this is the required format for the index buffer.
/// This has no effect on non-indexed or non-strip draws.
#[cfg_attr(feature = "serde", serde(default))]
pub strip_index_format: Option<IndexFormat>,
/// The face to consider the front for the purpose of culling and stencil operations.
#[cfg_attr(feature = "serde", serde(default))]
pub front_face: FrontFace,
/// The face culling mode.
#[cfg_attr(feature = "serde", serde(default))]
pub cull_mode: Option<Face>,
/// If set to true, the polygon depth is not clipped to 0-1 before rasterization.
///
/// Enabling this requires `Features::DEPTH_CLIP_CONTROL` to be enabled.
#[cfg_attr(feature = "serde", serde(default))]
pub unclipped_depth: bool,
/// Controls the way each polygon is rasterized. Can be either `Fill` (default), `Line` or `Point`
///
/// Setting this to `Line` requires `Features::POLYGON_MODE_LINE` to be enabled.
///
/// Setting this to `Point` requires `Features::POLYGON_MODE_POINT` to be enabled.
#[cfg_attr(feature = "serde", serde(default))]
pub polygon_mode: PolygonMode,
/// If set to true, the primitives are rendered with conservative overestimation. I.e. any rastered pixel touched by it is filled.
/// Only valid for PolygonMode::Fill!
///
/// Enabling this requires `Features::CONSERVATIVE_RASTERIZATION` to be enabled.
pub conservative: bool,
}
/// Describes the multi-sampling state of a render pipeline.
///
/// Corresponds to [WebGPU `GPUMultisampleState`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpumultisamplestate).
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "camelCase"))]
pub struct MultisampleState {
/// The number of samples calculated per pixel (for MSAA). For non-multisampled textures,
/// this should be `1`
pub count: u32,
/// Bitmask that restricts the samples of a pixel modified by this pipeline. All samples
/// can be enabled using the value `!0`
pub mask: u64,
/// When enabled, produces another sample mask per pixel based on the alpha output value, that
/// is ANDed with the sample_mask and the primitive coverage to restrict the set of samples
/// affected by a primitive.
///
/// The implicit mask produced for alpha of zero is guaranteed to be zero, and for alpha of one
/// is guaranteed to be all 1-s.
pub alpha_to_coverage_enabled: bool,
}
impl Default for MultisampleState {
fn default() -> Self {
MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
}
}
}
bitflags::bitflags! {
/// Feature flags for a texture format.
#[repr(transparent)]
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct TextureFormatFeatureFlags: u32 {
/// If not present, the texture can't be sampled with a filtering sampler.
/// This may overwrite TextureSampleType::Float.filterable
const FILTERABLE = 1 << 0;
/// Allows [`TextureDescriptor::sample_count`] to be `2`.
const MULTISAMPLE_X2 = 1 << 1;
/// Allows [`TextureDescriptor::sample_count`] to be `4`.
const MULTISAMPLE_X4 = 1 << 2 ;
/// Allows [`TextureDescriptor::sample_count`] to be `8`.
const MULTISAMPLE_X8 = 1 << 3 ;
/// Allows [`TextureDescriptor::sample_count`] to be `16`.
const MULTISAMPLE_X16 = 1 << 4;
/// Allows a texture of this format to back a view passed as `resolve_target`
/// to a render pass for an automatic driver-implemented resolve.
const MULTISAMPLE_RESOLVE = 1 << 5;
/// When used as a STORAGE texture, then a texture with this format can be bound with
/// [`StorageTextureAccess::ReadOnly`] or [`StorageTextureAccess::ReadWrite`].
const STORAGE_READ_WRITE = 1 << 6;
/// If not present, the texture can't be blended into the render target.
const BLENDABLE = 1 << 7;
}
}
impl TextureFormatFeatureFlags {
/// Sample count supported by a given texture format.
///
/// returns `true` if `count` is a supported sample count.
pub fn sample_count_supported(&self, count: u32) -> bool {
use TextureFormatFeatureFlags as tfsc;
match count {
1 => true,
2 => self.contains(tfsc::MULTISAMPLE_X2),
4 => self.contains(tfsc::MULTISAMPLE_X4),
8 => self.contains(tfsc::MULTISAMPLE_X8),
16 => self.contains(tfsc::MULTISAMPLE_X16),
_ => false,
}
}
}
impl_bitflags!(TextureFormatFeatureFlags);
/// Features supported by a given texture format
///
/// Features are defined by WebGPU specification unless `Features::TEXTURE_ADAPTER_SPECIFIC_FORMAT_FEATURES` is enabled.
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
pub struct TextureFormatFeatures {
/// Valid bits for `TextureDescriptor::Usage` provided for format creation.
pub allowed_usages: TextureUsages,
/// Additional property flags for the format.
pub flags: TextureFormatFeatureFlags,
}
/// ASTC block dimensions
#[repr(C)]
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
pub enum AstcBlock {
/// 4x4 block compressed texture. 16 bytes per block (8 bit/px).
B4x4,
/// 5x4 block compressed texture. 16 bytes per block (6.4 bit/px).
B5x4,
/// 5x5 block compressed texture. 16 bytes per block (5.12 bit/px).
B5x5,
/// 6x5 block compressed texture. 16 bytes per block (4.27 bit/px).
B6x5,
/// 6x6 block compressed texture. 16 bytes per block (3.56 bit/px).
B6x6,
/// 8x5 block compressed texture. 16 bytes per block (3.2 bit/px).
B8x5,
/// 8x6 block compressed texture. 16 bytes per block (2.67 bit/px).
B8x6,
/// 8x8 block compressed texture. 16 bytes per block (2 bit/px).
B8x8,
/// 10x5 block compressed texture. 16 bytes per block (2.56 bit/px).
B10x5,
/// 10x6 block compressed texture. 16 bytes per block (2.13 bit/px).
B10x6,
/// 10x8 block compressed texture. 16 bytes per block (1.6 bit/px).
B10x8,
/// 10x10 block compressed texture. 16 bytes per block (1.28 bit/px).
B10x10,
/// 12x10 block compressed texture. 16 bytes per block (1.07 bit/px).
B12x10,
/// 12x12 block compressed texture. 16 bytes per block (0.89 bit/px).
B12x12,
}
/// ASTC RGBA channel
#[repr(C)]
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
pub enum AstcChannel {
/// 8 bit integer RGBA, [0, 255] converted to/from linear-color float [0, 1] in shader.
///
/// [`Features::TEXTURE_COMPRESSION_ASTC`] must be enabled to use this channel.
Unorm,
/// 8 bit integer RGBA, Srgb-color [0, 255] converted to/from linear-color float [0, 1] in shader.
///
/// [`Features::TEXTURE_COMPRESSION_ASTC`] must be enabled to use this channel.
UnormSrgb,
/// floating-point RGBA, linear-color float can be outside of the [0, 1] range.
///
/// [`Features::TEXTURE_COMPRESSION_ASTC_HDR`] must be enabled to use this channel.
Hdr,
}
/// Underlying texture data format.
///
/// If there is a conversion in the format (such as srgb -> linear), the conversion listed here is for
/// loading from texture in a shader. When writing to the texture, the opposite conversion takes place.
///
/// Corresponds to [WebGPU `GPUTextureFormat`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gputextureformat).
#[repr(C)]
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
pub enum TextureFormat {
// Normal 8 bit formats
/// Red channel only. 8 bit integer per channel. [0, 255] converted to/from float [0, 1] in shader.
R8Unorm,
/// Red channel only. 8 bit integer per channel. [-127, 127] converted to/from float [-1, 1] in shader.
R8Snorm,
/// Red channel only. 8 bit integer per channel. Unsigned in shader.
R8Uint,
/// Red channel only. 8 bit integer per channel. Signed in shader.
R8Sint,
// Normal 16 bit formats
/// Red channel only. 16 bit integer per channel. Unsigned in shader.
R16Uint,
/// Red channel only. 16 bit integer per channel. Signed in shader.
R16Sint,
/// Red channel only. 16 bit integer per channel. [0, 65535] converted to/from float [0, 1] in shader.
///
/// [`Features::TEXTURE_FORMAT_16BIT_NORM`] must be enabled to use this texture format.
R16Unorm,
/// Red channel only. 16 bit integer per channel. [0, 65535] converted to/from float [-1, 1] in shader.
///
/// [`Features::TEXTURE_FORMAT_16BIT_NORM`] must be enabled to use this texture format.
R16Snorm,
/// Red channel only. 16 bit float per channel. Float in shader.
R16Float,
/// Red and green channels. 8 bit integer per channel. [0, 255] converted to/from float [0, 1] in shader.
Rg8Unorm,
/// Red and green channels. 8 bit integer per channel. [-127, 127] converted to/from float [-1, 1] in shader.
Rg8Snorm,
/// Red and green channels. 8 bit integer per channel. Unsigned in shader.
Rg8Uint,
/// Red and green channels. 8 bit integer per channel. Signed in shader.
Rg8Sint,
// Normal 32 bit formats
/// Red channel only. 32 bit integer per channel. Unsigned in shader.
R32Uint,
/// Red channel only. 32 bit integer per channel. Signed in shader.
R32Sint,
/// Red channel only. 32 bit float per channel. Float in shader.
R32Float,
/// Red and green channels. 16 bit integer per channel. Unsigned in shader.
Rg16Uint,
/// Red and green channels. 16 bit integer per channel. Signed in shader.
Rg16Sint,
/// Red and green channels. 16 bit integer per channel. [0, 65535] converted to/from float [0, 1] in shader.
///
/// [`Features::TEXTURE_FORMAT_16BIT_NORM`] must be enabled to use this texture format.
Rg16Unorm,
/// Red and green channels. 16 bit integer per channel. [0, 65535] converted to/from float [-1, 1] in shader.
///
/// [`Features::TEXTURE_FORMAT_16BIT_NORM`] must be enabled to use this texture format.
Rg16Snorm,
/// Red and green channels. 16 bit float per channel. Float in shader.
Rg16Float,
/// Red, green, blue, and alpha channels. 8 bit integer per channel. [0, 255] converted to/from float [0, 1] in shader.
Rgba8Unorm,
/// Red, green, blue, and alpha channels. 8 bit integer per channel. Srgb-color [0, 255] converted to/from linear-color float [0, 1] in shader.
Rgba8UnormSrgb,
/// Red, green, blue, and alpha channels. 8 bit integer per channel. [-127, 127] converted to/from float [-1, 1] in shader.
Rgba8Snorm,
/// Red, green, blue, and alpha channels. 8 bit integer per channel. Unsigned in shader.
Rgba8Uint,
/// Red, green, blue, and alpha channels. 8 bit integer per channel. Signed in shader.
Rgba8Sint,
/// Blue, green, red, and alpha channels. 8 bit integer per channel. [0, 255] converted to/from float [0, 1] in shader.
Bgra8Unorm,
/// Blue, green, red, and alpha channels. 8 bit integer per channel. Srgb-color [0, 255] converted to/from linear-color float [0, 1] in shader.
Bgra8UnormSrgb,
// Packed 32 bit formats
/// Packed unsigned float with 9 bits mantisa for each RGB component, then a common 5 bits exponent
Rgb9e5Ufloat,
/// Red, green, blue, and alpha channels. 10 bit integer for RGB channels, 2 bit integer for alpha channel. [0, 1023] ([0, 3] for alpha) converted to/from float [0, 1] in shader.
Rgb10a2Unorm,
/// Red, green, and blue channels. 11 bit float with no sign bit for RG channels. 10 bit float with no sign bit for blue channel. Float in shader.
Rg11b10Float,
// Normal 64 bit formats
/// Red and green channels. 32 bit integer per channel. Unsigned in shader.
Rg32Uint,
/// Red and green channels. 32 bit integer per channel. Signed in shader.
Rg32Sint,
/// Red and green channels. 32 bit float per channel. Float in shader.
Rg32Float,
/// Red, green, blue, and alpha channels. 16 bit integer per channel. Unsigned in shader.
Rgba16Uint,
/// Red, green, blue, and alpha channels. 16 bit integer per channel. Signed in shader.
Rgba16Sint,
/// Red, green, blue, and alpha channels. 16 bit integer per channel. [0, 65535] converted to/from float [0, 1] in shader.
///
/// [`Features::TEXTURE_FORMAT_16BIT_NORM`] must be enabled to use this texture format.
Rgba16Unorm,
/// Red, green, blue, and alpha. 16 bit integer per channel. [0, 65535] converted to/from float [-1, 1] in shader.
///
/// [`Features::TEXTURE_FORMAT_16BIT_NORM`] must be enabled to use this texture format.
Rgba16Snorm,
/// Red, green, blue, and alpha channels. 16 bit float per channel. Float in shader.
Rgba16Float,
// Normal 128 bit formats
/// Red, green, blue, and alpha channels. 32 bit integer per channel. Unsigned in shader.
Rgba32Uint,
/// Red, green, blue, and alpha channels. 32 bit integer per channel. Signed in shader.
Rgba32Sint,
/// Red, green, blue, and alpha channels. 32 bit float per channel. Float in shader.
Rgba32Float,
// Depth and stencil formats
/// Stencil format with 8 bit integer stencil.
Stencil8,
/// Special depth format with 16 bit integer depth.
Depth16Unorm,
/// Special depth format with at least 24 bit integer depth.
Depth24Plus,
/// Special depth/stencil format with at least 24 bit integer depth and 8 bits integer stencil.
Depth24PlusStencil8,
/// Special depth format with 32 bit floating point depth.
Depth32Float,
/// Special depth/stencil format with 32 bit floating point depth and 8 bits integer stencil.
Depth32FloatStencil8,
// Compressed textures usable with `TEXTURE_COMPRESSION_BC` feature.
/// 4x4 block compressed texture. 8 bytes per block (4 bit/px). 4 color + alpha pallet. 5 bit R + 6 bit G + 5 bit B + 1 bit alpha.
/// [0, 63] ([0, 1] for alpha) converted to/from float [0, 1] in shader.
///
/// Also known as DXT1.
///
/// [`Features::TEXTURE_COMPRESSION_BC`] must be enabled to use this texture format.
Bc1RgbaUnorm,
/// 4x4 block compressed texture. 8 bytes per block (4 bit/px). 4 color + alpha pallet. 5 bit R + 6 bit G + 5 bit B + 1 bit alpha.
/// Srgb-color [0, 63] ([0, 1] for alpha) converted to/from linear-color float [0, 1] in shader.
///
/// Also known as DXT1.
///
/// [`Features::TEXTURE_COMPRESSION_BC`] must be enabled to use this texture format.
Bc1RgbaUnormSrgb,
/// 4x4 block compressed texture. 16 bytes per block (8 bit/px). 4 color pallet. 5 bit R + 6 bit G + 5 bit B + 4 bit alpha.
/// [0, 63] ([0, 15] for alpha) converted to/from float [0, 1] in shader.
///
/// Also known as DXT3.
///
/// [`Features::TEXTURE_COMPRESSION_BC`] must be enabled to use this texture format.
Bc2RgbaUnorm,
/// 4x4 block compressed texture. 16 bytes per block (8 bit/px). 4 color pallet. 5 bit R + 6 bit G + 5 bit B + 4 bit alpha.
/// Srgb-color [0, 63] ([0, 255] for alpha) converted to/from linear-color float [0, 1] in shader.
///
/// Also known as DXT3.
///
/// [`Features::TEXTURE_COMPRESSION_BC`] must be enabled to use this texture format.
Bc2RgbaUnormSrgb,
/// 4x4 block compressed texture. 16 bytes per block (8 bit/px). 4 color pallet + 8 alpha pallet. 5 bit R + 6 bit G + 5 bit B + 8 bit alpha.
/// [0, 63] ([0, 255] for alpha) converted to/from float [0, 1] in shader.
///
/// Also known as DXT5.
///
/// [`Features::TEXTURE_COMPRESSION_BC`] must be enabled to use this texture format.
Bc3RgbaUnorm,
/// 4x4 block compressed texture. 16 bytes per block (8 bit/px). 4 color pallet + 8 alpha pallet. 5 bit R + 6 bit G + 5 bit B + 8 bit alpha.
/// Srgb-color [0, 63] ([0, 255] for alpha) converted to/from linear-color float [0, 1] in shader.
///
/// Also known as DXT5.
///
/// [`Features::TEXTURE_COMPRESSION_BC`] must be enabled to use this texture format.
Bc3RgbaUnormSrgb,
/// 4x4 block compressed texture. 8 bytes per block (4 bit/px). 8 color pallet. 8 bit R.
/// [0, 255] converted to/from float [0, 1] in shader.
///
/// Also known as RGTC1.
///
/// [`Features::TEXTURE_COMPRESSION_BC`] must be enabled to use this texture format.
Bc4RUnorm,
/// 4x4 block compressed texture. 8 bytes per block (4 bit/px). 8 color pallet. 8 bit R.
/// [-127, 127] converted to/from float [-1, 1] in shader.
///
/// Also known as RGTC1.
///
/// [`Features::TEXTURE_COMPRESSION_BC`] must be enabled to use this texture format.
Bc4RSnorm,
/// 4x4 block compressed texture. 16 bytes per block (8 bit/px). 8 color red pallet + 8 color green pallet. 8 bit RG.
/// [0, 255] converted to/from float [0, 1] in shader.
///
/// Also known as RGTC2.
///
/// [`Features::TEXTURE_COMPRESSION_BC`] must be enabled to use this texture format.
Bc5RgUnorm,
/// 4x4 block compressed texture. 16 bytes per block (8 bit/px). 8 color red pallet + 8 color green pallet. 8 bit RG.
/// [-127, 127] converted to/from float [-1, 1] in shader.
///
/// Also known as RGTC2.
///
/// [`Features::TEXTURE_COMPRESSION_BC`] must be enabled to use this texture format.
Bc5RgSnorm,
/// 4x4 block compressed texture. 16 bytes per block (8 bit/px). Variable sized pallet. 16 bit unsigned float RGB. Float in shader.
///
/// Also known as BPTC (float).
///
/// [`Features::TEXTURE_COMPRESSION_BC`] must be enabled to use this texture format.
Bc6hRgbUfloat,
/// 4x4 block compressed texture. 16 bytes per block (8 bit/px). Variable sized pallet. 16 bit signed float RGB. Float in shader.
///
/// Also known as BPTC (float).
///
/// [`Features::TEXTURE_COMPRESSION_BC`] must be enabled to use this texture format.
Bc6hRgbFloat,
/// 4x4 block compressed texture. 16 bytes per block (8 bit/px). Variable sized pallet. 8 bit integer RGBA.
/// [0, 255] converted to/from float [0, 1] in shader.
///
/// Also known as BPTC (unorm).
///
/// [`Features::TEXTURE_COMPRESSION_BC`] must be enabled to use this texture format.
Bc7RgbaUnorm,
/// 4x4 block compressed texture. 16 bytes per block (8 bit/px). Variable sized pallet. 8 bit integer RGBA.
/// Srgb-color [0, 255] converted to/from linear-color float [0, 1] in shader.
///
/// Also known as BPTC (unorm).
///
/// [`Features::TEXTURE_COMPRESSION_BC`] must be enabled to use this texture format.
Bc7RgbaUnormSrgb,
/// 4x4 block compressed texture. 8 bytes per block (4 bit/px). Complex pallet. 8 bit integer RGB.
/// [0, 255] converted to/from float [0, 1] in shader.
///
/// [`Features::TEXTURE_COMPRESSION_ETC2`] must be enabled to use this texture format.
Etc2Rgb8Unorm,
/// 4x4 block compressed texture. 8 bytes per block (4 bit/px). Complex pallet. 8 bit integer RGB.
/// Srgb-color [0, 255] converted to/from linear-color float [0, 1] in shader.
///
/// [`Features::TEXTURE_COMPRESSION_ETC2`] must be enabled to use this texture format.
Etc2Rgb8UnormSrgb,
/// 4x4 block compressed texture. 8 bytes per block (4 bit/px). Complex pallet. 8 bit integer RGB + 1 bit alpha.
/// [0, 255] ([0, 1] for alpha) converted to/from float [0, 1] in shader.
///
/// [`Features::TEXTURE_COMPRESSION_ETC2`] must be enabled to use this texture format.
Etc2Rgb8A1Unorm,
/// 4x4 block compressed texture. 8 bytes per block (4 bit/px). Complex pallet. 8 bit integer RGB + 1 bit alpha.
/// Srgb-color [0, 255] ([0, 1] for alpha) converted to/from linear-color float [0, 1] in shader.
///
/// [`Features::TEXTURE_COMPRESSION_ETC2`] must be enabled to use this texture format.
Etc2Rgb8A1UnormSrgb,
/// 4x4 block compressed texture. 16 bytes per block (8 bit/px). Complex pallet. 8 bit integer RGB + 8 bit alpha.
/// [0, 255] converted to/from float [0, 1] in shader.
///
/// [`Features::TEXTURE_COMPRESSION_ETC2`] must be enabled to use this texture format.
Etc2Rgba8Unorm,
/// 4x4 block compressed texture. 16 bytes per block (8 bit/px). Complex pallet. 8 bit integer RGB + 8 bit alpha.
/// Srgb-color [0, 255] converted to/from linear-color float [0, 1] in shader.
///
/// [`Features::TEXTURE_COMPRESSION_ETC2`] must be enabled to use this texture format.
Etc2Rgba8UnormSrgb,
/// 4x4 block compressed texture. 8 bytes per block (4 bit/px). Complex pallet. 11 bit integer R.
/// [0, 255] converted to/from float [0, 1] in shader.
///
/// [`Features::TEXTURE_COMPRESSION_ETC2`] must be enabled to use this texture format.
EacR11Unorm,
/// 4x4 block compressed texture. 8 bytes per block (4 bit/px). Complex pallet. 11 bit integer R.
/// [-127, 127] converted to/from float [-1, 1] in shader.
///
/// [`Features::TEXTURE_COMPRESSION_ETC2`] must be enabled to use this texture format.
EacR11Snorm,
/// 4x4 block compressed texture. 16 bytes per block (8 bit/px). Complex pallet. 11 bit integer R + 11 bit integer G.
/// [0, 255] converted to/from float [0, 1] in shader.
///
/// [`Features::TEXTURE_COMPRESSION_ETC2`] must be enabled to use this texture format.
EacRg11Unorm,
/// 4x4 block compressed texture. 16 bytes per block (8 bit/px). Complex pallet. 11 bit integer R + 11 bit integer G.
/// [-127, 127] converted to/from float [-1, 1] in shader.
///
/// [`Features::TEXTURE_COMPRESSION_ETC2`] must be enabled to use this texture format.
EacRg11Snorm,
/// block compressed texture. 16 bytes per block.
///
/// Features [`TEXTURE_COMPRESSION_ASTC`] or [`TEXTURE_COMPRESSION_ASTC_HDR`]
/// must be enabled to use this texture format.
///
/// [`TEXTURE_COMPRESSION_ASTC`]: Features::TEXTURE_COMPRESSION_ASTC
/// [`TEXTURE_COMPRESSION_ASTC_HDR`]: Features::TEXTURE_COMPRESSION_ASTC_HDR
Astc {
/// compressed block dimensions
block: AstcBlock,
/// ASTC RGBA channel
channel: AstcChannel,
},
}
#[cfg(any(feature = "serde", test))]
impl<'de> Deserialize<'de> for TextureFormat {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
use serde::de::{self, Error, Unexpected};
struct TextureFormatVisitor;
impl<'de> de::Visitor<'de> for TextureFormatVisitor {
type Value = TextureFormat;
fn expecting(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
formatter.write_str("a valid texture format")
}
fn visit_str<E: Error>(self, s: &str) -> Result<Self::Value, E> {
let format = match s {
"r8unorm" => TextureFormat::R8Unorm,
"r8snorm" => TextureFormat::R8Snorm,
"r8uint" => TextureFormat::R8Uint,
"r8sint" => TextureFormat::R8Sint,
"r16uint" => TextureFormat::R16Uint,
"r16sint" => TextureFormat::R16Sint,
"r16unorm" => TextureFormat::R16Unorm,
"r16snorm" => TextureFormat::R16Snorm,
"r16float" => TextureFormat::R16Float,
"rg8unorm" => TextureFormat::Rg8Unorm,
"rg8snorm" => TextureFormat::Rg8Snorm,
"rg8uint" => TextureFormat::Rg8Uint,
"rg8sint" => TextureFormat::Rg8Sint,
"r32uint" => TextureFormat::R32Uint,
"r32sint" => TextureFormat::R32Sint,
"r32float" => TextureFormat::R32Float,
"rg16uint" => TextureFormat::Rg16Uint,
"rg16sint" => TextureFormat::Rg16Sint,
"rg16unorm" => TextureFormat::Rg16Unorm,
"rg16snorm" => TextureFormat::Rg16Snorm,
"rg16float" => TextureFormat::Rg16Float,
"rgba8unorm" => TextureFormat::Rgba8Unorm,
"rgba8unorm-srgb" => TextureFormat::Rgba8UnormSrgb,
"rgba8snorm" => TextureFormat::Rgba8Snorm,
"rgba8uint" => TextureFormat::Rgba8Uint,
"rgba8sint" => TextureFormat::Rgba8Sint,
"bgra8unorm" => TextureFormat::Bgra8Unorm,
"bgra8unorm-srgb" => TextureFormat::Bgra8UnormSrgb,
"rgb10a2unorm" => TextureFormat::Rgb10a2Unorm,
"rg11b10ufloat" => TextureFormat::Rg11b10Float,
"rg32uint" => TextureFormat::Rg32Uint,
"rg32sint" => TextureFormat::Rg32Sint,
"rg32float" => TextureFormat::Rg32Float,
"rgba16uint" => TextureFormat::Rgba16Uint,
"rgba16sint" => TextureFormat::Rgba16Sint,
"rgba16unorm" => TextureFormat::Rgba16Unorm,
"rgba16snorm" => TextureFormat::Rgba16Snorm,
"rgba16float" => TextureFormat::Rgba16Float,
"rgba32uint" => TextureFormat::Rgba32Uint,
"rgba32sint" => TextureFormat::Rgba32Sint,
"rgba32float" => TextureFormat::Rgba32Float,
"stencil8" => TextureFormat::Stencil8,
"depth32float" => TextureFormat::Depth32Float,
"depth32float-stencil8" => TextureFormat::Depth32FloatStencil8,
"depth16unorm" => TextureFormat::Depth16Unorm,
"depth24plus" => TextureFormat::Depth24Plus,
"depth24plus-stencil8" => TextureFormat::Depth24PlusStencil8,
"rgb9e5ufloat" => TextureFormat::Rgb9e5Ufloat,
"bc1-rgba-unorm" => TextureFormat::Bc1RgbaUnorm,
"bc1-rgba-unorm-srgb" => TextureFormat::Bc1RgbaUnormSrgb,
"bc2-rgba-unorm" => TextureFormat::Bc2RgbaUnorm,
"bc2-rgba-unorm-srgb" => TextureFormat::Bc2RgbaUnormSrgb,
"bc3-rgba-unorm" => TextureFormat::Bc3RgbaUnorm,
"bc3-rgba-unorm-srgb" => TextureFormat::Bc3RgbaUnormSrgb,
"bc4-r-unorm" => TextureFormat::Bc4RUnorm,
"bc4-r-snorm" => TextureFormat::Bc4RSnorm,
"bc5-rg-unorm" => TextureFormat::Bc5RgUnorm,
"bc5-rg-snorm" => TextureFormat::Bc5RgSnorm,
"bc6h-rgb-ufloat" => TextureFormat::Bc6hRgbUfloat,
"bc6h-rgb-float" => TextureFormat::Bc6hRgbFloat,
"bc7-rgba-unorm" => TextureFormat::Bc7RgbaUnorm,
"bc7-rgba-unorm-srgb" => TextureFormat::Bc7RgbaUnormSrgb,
"etc2-rgb8unorm" => TextureFormat::Etc2Rgb8Unorm,
"etc2-rgb8unorm-srgb" => TextureFormat::Etc2Rgb8UnormSrgb,
"etc2-rgb8a1unorm" => TextureFormat::Etc2Rgb8A1Unorm,
"etc2-rgb8a1unorm-srgb" => TextureFormat::Etc2Rgb8A1UnormSrgb,
"etc2-rgba8unorm" => TextureFormat::Etc2Rgba8Unorm,
"etc2-rgba8unorm-srgb" => TextureFormat::Etc2Rgba8UnormSrgb,
"eac-r11unorm" => TextureFormat::EacR11Unorm,
"eac-r11snorm" => TextureFormat::EacR11Snorm,
"eac-rg11unorm" => TextureFormat::EacRg11Unorm,
"eac-rg11snorm" => TextureFormat::EacRg11Snorm,
other => {
if let Some(parts) = other.strip_prefix("astc-") {
let (block, channel) = parts
.split_once('-')
.ok_or_else(|| E::invalid_value(Unexpected::Str(s), &self))?;
let block = match block {
"4x4" => AstcBlock::B4x4,
"5x4" => AstcBlock::B5x4,
"5x5" => AstcBlock::B5x5,
"6x5" => AstcBlock::B6x5,
"6x6" => AstcBlock::B6x6,
"8x5" => AstcBlock::B8x5,
"8x6" => AstcBlock::B8x6,
"8x8" => AstcBlock::B8x8,
"10x5" => AstcBlock::B10x5,
"10x6" => AstcBlock::B10x6,
"10x8" => AstcBlock::B10x8,
"10x10" => AstcBlock::B10x10,
"12x10" => AstcBlock::B12x10,
"12x12" => AstcBlock::B12x12,
_ => return Err(E::invalid_value(Unexpected::Str(s), &self)),
};
let channel = match channel {
"unorm" => AstcChannel::Unorm,
"unorm-srgb" => AstcChannel::UnormSrgb,
"hdr" => AstcChannel::Hdr,
_ => return Err(E::invalid_value(Unexpected::Str(s), &self)),
};
TextureFormat::Astc { block, channel }
} else {
return Err(E::invalid_value(Unexpected::Str(s), &self));
}
}
};
Ok(format)
}
}
deserializer.deserialize_str(TextureFormatVisitor)
}
}
#[cfg(any(feature = "serde", test))]
impl Serialize for TextureFormat {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
let s: String;
let name = match *self {
TextureFormat::R8Unorm => "r8unorm",
TextureFormat::R8Snorm => "r8snorm",
TextureFormat::R8Uint => "r8uint",
TextureFormat::R8Sint => "r8sint",
TextureFormat::R16Uint => "r16uint",
TextureFormat::R16Sint => "r16sint",
TextureFormat::R16Unorm => "r16unorm",
TextureFormat::R16Snorm => "r16snorm",
TextureFormat::R16Float => "r16float",
TextureFormat::Rg8Unorm => "rg8unorm",
TextureFormat::Rg8Snorm => "rg8snorm",
TextureFormat::Rg8Uint => "rg8uint",
TextureFormat::Rg8Sint => "rg8sint",
TextureFormat::R32Uint => "r32uint",
TextureFormat::R32Sint => "r32sint",
TextureFormat::R32Float => "r32float",
TextureFormat::Rg16Uint => "rg16uint",
TextureFormat::Rg16Sint => "rg16sint",
TextureFormat::Rg16Unorm => "rg16unorm",
TextureFormat::Rg16Snorm => "rg16snorm",
TextureFormat::Rg16Float => "rg16float",
TextureFormat::Rgba8Unorm => "rgba8unorm",
TextureFormat::Rgba8UnormSrgb => "rgba8unorm-srgb",
TextureFormat::Rgba8Snorm => "rgba8snorm",
TextureFormat::Rgba8Uint => "rgba8uint",
TextureFormat::Rgba8Sint => "rgba8sint",
TextureFormat::Bgra8Unorm => "bgra8unorm",
TextureFormat::Bgra8UnormSrgb => "bgra8unorm-srgb",
TextureFormat::Rgb10a2Unorm => "rgb10a2unorm",
TextureFormat::Rg11b10Float => "rg11b10ufloat",
TextureFormat::Rg32Uint => "rg32uint",
TextureFormat::Rg32Sint => "rg32sint",
TextureFormat::Rg32Float => "rg32float",
TextureFormat::Rgba16Uint => "rgba16uint",
TextureFormat::Rgba16Sint => "rgba16sint",
TextureFormat::Rgba16Unorm => "rgba16unorm",
TextureFormat::Rgba16Snorm => "rgba16snorm",
TextureFormat::Rgba16Float => "rgba16float",
TextureFormat::Rgba32Uint => "rgba32uint",
TextureFormat::Rgba32Sint => "rgba32sint",
TextureFormat::Rgba32Float => "rgba32float",
TextureFormat::Stencil8 => "stencil8",
TextureFormat::Depth32Float => "depth32float",
TextureFormat::Depth16Unorm => "depth16unorm",
TextureFormat::Depth32FloatStencil8 => "depth32float-stencil8",
TextureFormat::Depth24Plus => "depth24plus",
TextureFormat::Depth24PlusStencil8 => "depth24plus-stencil8",
TextureFormat::Rgb9e5Ufloat => "rgb9e5ufloat",
TextureFormat::Bc1RgbaUnorm => "bc1-rgba-unorm",
TextureFormat::Bc1RgbaUnormSrgb => "bc1-rgba-unorm-srgb",
TextureFormat::Bc2RgbaUnorm => "bc2-rgba-unorm",
TextureFormat::Bc2RgbaUnormSrgb => "bc2-rgba-unorm-srgb",
TextureFormat::Bc3RgbaUnorm => "bc3-rgba-unorm",
TextureFormat::Bc3RgbaUnormSrgb => "bc3-rgba-unorm-srgb",
TextureFormat::Bc4RUnorm => "bc4-r-unorm",
TextureFormat::Bc4RSnorm => "bc4-r-snorm",
TextureFormat::Bc5RgUnorm => "bc5-rg-unorm",
TextureFormat::Bc5RgSnorm => "bc5-rg-snorm",
TextureFormat::Bc6hRgbUfloat => "bc6h-rgb-ufloat",
TextureFormat::Bc6hRgbFloat => "bc6h-rgb-float",
TextureFormat::Bc7RgbaUnorm => "bc7-rgba-unorm",
TextureFormat::Bc7RgbaUnormSrgb => "bc7-rgba-unorm-srgb",
TextureFormat::Etc2Rgb8Unorm => "etc2-rgb8unorm",
TextureFormat::Etc2Rgb8UnormSrgb => "etc2-rgb8unorm-srgb",
TextureFormat::Etc2Rgb8A1Unorm => "etc2-rgb8a1unorm",
TextureFormat::Etc2Rgb8A1UnormSrgb => "etc2-rgb8a1unorm-srgb",
TextureFormat::Etc2Rgba8Unorm => "etc2-rgba8unorm",
TextureFormat::Etc2Rgba8UnormSrgb => "etc2-rgba8unorm-srgb",
TextureFormat::EacR11Unorm => "eac-r11unorm",
TextureFormat::EacR11Snorm => "eac-r11snorm",
TextureFormat::EacRg11Unorm => "eac-rg11unorm",
TextureFormat::EacRg11Snorm => "eac-rg11snorm",
TextureFormat::Astc { block, channel } => {
let block = match block {
AstcBlock::B4x4 => "4x4",
AstcBlock::B5x4 => "5x4",
AstcBlock::B5x5 => "5x5",
AstcBlock::B6x5 => "6x5",
AstcBlock::B6x6 => "6x6",
AstcBlock::B8x5 => "8x5",
AstcBlock::B8x6 => "8x6",
AstcBlock::B8x8 => "8x8",
AstcBlock::B10x5 => "10x5",
AstcBlock::B10x6 => "10x6",
AstcBlock::B10x8 => "10x8",
AstcBlock::B10x10 => "10x10",
AstcBlock::B12x10 => "12x10",
AstcBlock::B12x12 => "12x12",
};
let channel = match channel {
AstcChannel::Unorm => "unorm",
AstcChannel::UnormSrgb => "unorm-srgb",
AstcChannel::Hdr => "hdr",
};
s = format!("astc-{block}-{channel}");
&s
}
};
serializer.serialize_str(name)
}
}
impl TextureFormat {
/// Returns the aspect-specific format of the original format
///
/// see <https://gpuweb.github.io/gpuweb/#abstract-opdef-resolving-gputextureaspect>
pub fn aspect_specific_format(&self, aspect: TextureAspect) -> Option<Self> {
match (*self, aspect) {
(Self::Stencil8, TextureAspect::StencilOnly) => Some(*self),
(
Self::Depth16Unorm | Self::Depth24Plus | Self::Depth32Float,
TextureAspect::DepthOnly,
) => Some(*self),
(
Self::Depth24PlusStencil8 | Self::Depth32FloatStencil8,
TextureAspect::StencilOnly,
) => Some(Self::Stencil8),
(Self::Depth24PlusStencil8, TextureAspect::DepthOnly) => Some(Self::Depth24Plus),
(Self::Depth32FloatStencil8, TextureAspect::DepthOnly) => Some(Self::Depth32Float),
(format, TextureAspect::All) => Some(format),
_ => None,
}
}
/// Returns `true` if `self` is a depth or stencil component of the given
/// combined depth-stencil format
pub fn is_depth_stencil_component(&self, combined_format: Self) -> bool {
match (combined_format, *self) {
(Self::Depth24PlusStencil8, Self::Depth24Plus | Self::Stencil8)
| (Self::Depth32FloatStencil8, Self::Depth32Float | Self::Stencil8) => true,
_ => false,
}
}
/// Returns `true` if the format is a depth and/or stencil format
///
/// see <https://gpuweb.github.io/gpuweb/#depth-formats>
pub fn is_depth_stencil_format(&self) -> bool {
match *self {
Self::Stencil8
| Self::Depth16Unorm
| Self::Depth24Plus
| Self::Depth24PlusStencil8
| Self::Depth32Float
| Self::Depth32FloatStencil8 => true,
_ => false,
}
}
/// Returns `true` if the format is a combined depth-stencil format
///
/// see <https://gpuweb.github.io/gpuweb/#combined-depth-stencil-format>
pub fn is_combined_depth_stencil_format(&self) -> bool {
match *self {
Self::Depth24PlusStencil8 | Self::Depth32FloatStencil8 => true,
_ => false,
}
}
/// Returns `true` if the format has a color aspect
pub fn has_color_aspect(&self) -> bool {
!self.is_depth_stencil_format()
}
/// Returns `true` if the format has a depth aspect
pub fn has_depth_aspect(&self) -> bool {
match *self {
Self::Depth16Unorm
| Self::Depth24Plus
| Self::Depth24PlusStencil8
| Self::Depth32Float
| Self::Depth32FloatStencil8 => true,
_ => false,
}
}
/// Returns `true` if the format has a stencil aspect
pub fn has_stencil_aspect(&self) -> bool {
match *self {
Self::Stencil8 | Self::Depth24PlusStencil8 | Self::Depth32FloatStencil8 => true,
_ => false,
}
}
/// Returns the dimension of a block of texels.
pub fn block_dimensions(&self) -> (u32, u32) {
match *self {
Self::R8Unorm
| Self::R8Snorm
| Self::R8Uint
| Self::R8Sint
| Self::R16Uint
| Self::R16Sint
| Self::R16Unorm
| Self::R16Snorm
| Self::R16Float
| Self::Rg8Unorm
| Self::Rg8Snorm
| Self::Rg8Uint
| Self::Rg8Sint
| Self::R32Uint
| Self::R32Sint
| Self::R32Float
| Self::Rg16Uint
| Self::Rg16Sint
| Self::Rg16Unorm
| Self::Rg16Snorm
| Self::Rg16Float
| Self::Rgba8Unorm
| Self::Rgba8UnormSrgb
| Self::Rgba8Snorm
| Self::Rgba8Uint
| Self::Rgba8Sint
| Self::Bgra8Unorm
| Self::Bgra8UnormSrgb
| Self::Rgb9e5Ufloat
| Self::Rgb10a2Unorm
| Self::Rg11b10Float
| Self::Rg32Uint
| Self::Rg32Sint
| Self::Rg32Float
| Self::Rgba16Uint
| Self::Rgba16Sint
| Self::Rgba16Unorm
| Self::Rgba16Snorm
| Self::Rgba16Float
| Self::Rgba32Uint
| Self::Rgba32Sint
| Self::Rgba32Float
| Self::Stencil8
| Self::Depth16Unorm
| Self::Depth24Plus
| Self::Depth24PlusStencil8
| Self::Depth32Float
| Self::Depth32FloatStencil8 => (1, 1),
Self::Bc1RgbaUnorm
| Self::Bc1RgbaUnormSrgb
| Self::Bc2RgbaUnorm
| Self::Bc2RgbaUnormSrgb
| Self::Bc3RgbaUnorm
| Self::Bc3RgbaUnormSrgb
| Self::Bc4RUnorm
| Self::Bc4RSnorm
| Self::Bc5RgUnorm
| Self::Bc5RgSnorm
| Self::Bc6hRgbUfloat
| Self::Bc6hRgbFloat
| Self::Bc7RgbaUnorm
| Self::Bc7RgbaUnormSrgb => (4, 4),
Self::Etc2Rgb8Unorm
| Self::Etc2Rgb8UnormSrgb
| Self::Etc2Rgb8A1Unorm
| Self::Etc2Rgb8A1UnormSrgb
| Self::Etc2Rgba8Unorm
| Self::Etc2Rgba8UnormSrgb
| Self::EacR11Unorm
| Self::EacR11Snorm
| Self::EacRg11Unorm
| Self::EacRg11Snorm => (4, 4),
Self::Astc { block, .. } => match block {
AstcBlock::B4x4 => (4, 4),
AstcBlock::B5x4 => (5, 4),
AstcBlock::B5x5 => (5, 5),
AstcBlock::B6x5 => (6, 5),
AstcBlock::B6x6 => (6, 6),
AstcBlock::B8x5 => (8, 5),
AstcBlock::B8x6 => (8, 6),
AstcBlock::B8x8 => (8, 8),
AstcBlock::B10x5 => (10, 5),
AstcBlock::B10x6 => (10, 6),
AstcBlock::B10x8 => (10, 8),
AstcBlock::B10x10 => (10, 10),
AstcBlock::B12x10 => (12, 10),
AstcBlock::B12x12 => (12, 12),
},
}
}
/// Returns `true` for compressed formats.
pub fn is_compressed(&self) -> bool {
self.block_dimensions() != (1, 1)
}
/// Returns the required features (if any) in order to use the texture.
pub fn required_features(&self) -> Features {
match *self {
Self::R8Unorm
| Self::R8Snorm
| Self::R8Uint
| Self::R8Sint
| Self::R16Uint
| Self::R16Sint
| Self::R16Float
| Self::Rg8Unorm
| Self::Rg8Snorm
| Self::Rg8Uint
| Self::Rg8Sint
| Self::R32Uint
| Self::R32Sint
| Self::R32Float
| Self::Rg16Uint
| Self::Rg16Sint
| Self::Rg16Float
| Self::Rgba8Unorm
| Self::Rgba8UnormSrgb
| Self::Rgba8Snorm
| Self::Rgba8Uint
| Self::Rgba8Sint
| Self::Bgra8Unorm
| Self::Bgra8UnormSrgb
| Self::Rgb9e5Ufloat
| Self::Rgb10a2Unorm
| Self::Rg11b10Float
| Self::Rg32Uint
| Self::Rg32Sint
| Self::Rg32Float
| Self::Rgba16Uint
| Self::Rgba16Sint
| Self::Rgba16Float
| Self::Rgba32Uint
| Self::Rgba32Sint
| Self::Rgba32Float
| Self::Stencil8
| Self::Depth16Unorm
| Self::Depth24Plus
| Self::Depth24PlusStencil8
| Self::Depth32Float => Features::empty(),
Self::Depth32FloatStencil8 => Features::DEPTH32FLOAT_STENCIL8,
Self::R16Unorm
| Self::R16Snorm
| Self::Rg16Unorm
| Self::Rg16Snorm
| Self::Rgba16Unorm
| Self::Rgba16Snorm => Features::TEXTURE_FORMAT_16BIT_NORM,
Self::Bc1RgbaUnorm
| Self::Bc1RgbaUnormSrgb
| Self::Bc2RgbaUnorm
| Self::Bc2RgbaUnormSrgb
| Self::Bc3RgbaUnorm
| Self::Bc3RgbaUnormSrgb
| Self::Bc4RUnorm
| Self::Bc4RSnorm
| Self::Bc5RgUnorm
| Self::Bc5RgSnorm
| Self::Bc6hRgbUfloat
| Self::Bc6hRgbFloat
| Self::Bc7RgbaUnorm
| Self::Bc7RgbaUnormSrgb => Features::TEXTURE_COMPRESSION_BC,
Self::Etc2Rgb8Unorm
| Self::Etc2Rgb8UnormSrgb
| Self::Etc2Rgb8A1Unorm
| Self::Etc2Rgb8A1UnormSrgb
| Self::Etc2Rgba8Unorm
| Self::Etc2Rgba8UnormSrgb
| Self::EacR11Unorm
| Self::EacR11Snorm
| Self::EacRg11Unorm
| Self::EacRg11Snorm => Features::TEXTURE_COMPRESSION_ETC2,
Self::Astc { channel, .. } => match channel {
AstcChannel::Hdr => Features::TEXTURE_COMPRESSION_ASTC_HDR,
AstcChannel::Unorm | AstcChannel::UnormSrgb => Features::TEXTURE_COMPRESSION_ASTC,
},
}
}
/// Returns the format features guaranteed by the WebGPU spec.
///
/// Additional features are available if `Features::TEXTURE_ADAPTER_SPECIFIC_FORMAT_FEATURES` is enabled.
pub fn guaranteed_format_features(&self) -> TextureFormatFeatures {
// Multisampling
let noaa = TextureFormatFeatureFlags::empty();
let msaa = TextureFormatFeatureFlags::MULTISAMPLE_X4;
let msaa_resolve = msaa | TextureFormatFeatureFlags::MULTISAMPLE_RESOLVE;
// Flags
let basic =
TextureUsages::COPY_SRC | TextureUsages::COPY_DST | TextureUsages::TEXTURE_BINDING;
let attachment = basic | TextureUsages::RENDER_ATTACHMENT;
let storage = basic | TextureUsages::STORAGE_BINDING;
let all_flags = TextureUsages::all();
#[rustfmt::skip] // lets make a nice table
let (
mut flags,
allowed_usages,
) = match *self {
Self::R8Unorm => (msaa_resolve, attachment),
Self::R8Snorm => ( noaa, basic),
Self::R8Uint => ( msaa, attachment),
Self::R8Sint => ( msaa, attachment),
Self::R16Uint => ( msaa, attachment),
Self::R16Sint => ( msaa, attachment),
Self::R16Float => (msaa_resolve, attachment),
Self::Rg8Unorm => (msaa_resolve, attachment),
Self::Rg8Snorm => ( noaa, basic),
Self::Rg8Uint => ( msaa, attachment),
Self::Rg8Sint => ( msaa, attachment),
Self::R32Uint => ( noaa, all_flags),
Self::R32Sint => ( noaa, all_flags),
Self::R32Float => ( msaa, all_flags),
Self::Rg16Uint => ( msaa, attachment),
Self::Rg16Sint => ( msaa, attachment),
Self::Rg16Float => (msaa_resolve, attachment),
Self::Rgba8Unorm => (msaa_resolve, all_flags),
Self::Rgba8UnormSrgb => (msaa_resolve, attachment),
Self::Rgba8Snorm => ( noaa, storage),
Self::Rgba8Uint => ( msaa, all_flags),
Self::Rgba8Sint => ( msaa, all_flags),
Self::Bgra8Unorm => (msaa_resolve, attachment),
Self::Bgra8UnormSrgb => (msaa_resolve, attachment),
Self::Rgb10a2Unorm => (msaa_resolve, attachment),
Self::Rg11b10Float => ( msaa, basic),
Self::Rg32Uint => ( noaa, all_flags),
Self::Rg32Sint => ( noaa, all_flags),
Self::Rg32Float => ( noaa, all_flags),
Self::Rgba16Uint => ( msaa, all_flags),
Self::Rgba16Sint => ( msaa, all_flags),
Self::Rgba16Float => (msaa_resolve, all_flags),
Self::Rgba32Uint => ( noaa, all_flags),
Self::Rgba32Sint => ( noaa, all_flags),
Self::Rgba32Float => ( noaa, all_flags),
Self::Stencil8 => ( msaa, attachment),
Self::Depth16Unorm => ( msaa, attachment),
Self::Depth24Plus => ( msaa, attachment),
Self::Depth24PlusStencil8 => ( msaa, attachment),
Self::Depth32Float => ( msaa, attachment),
Self::Depth32FloatStencil8 => ( msaa, attachment),
Self::R16Unorm => ( msaa, storage),
Self::R16Snorm => ( msaa, storage),
Self::Rg16Unorm => ( msaa, storage),
Self::Rg16Snorm => ( msaa, storage),
Self::Rgba16Unorm => ( msaa, storage),
Self::Rgba16Snorm => ( msaa, storage),
Self::Rgb9e5Ufloat => ( noaa, basic),
Self::Bc1RgbaUnorm => ( noaa, basic),
Self::Bc1RgbaUnormSrgb => ( noaa, basic),
Self::Bc2RgbaUnorm => ( noaa, basic),
Self::Bc2RgbaUnormSrgb => ( noaa, basic),
Self::Bc3RgbaUnorm => ( noaa, basic),
Self::Bc3RgbaUnormSrgb => ( noaa, basic),
Self::Bc4RUnorm => ( noaa, basic),
Self::Bc4RSnorm => ( noaa, basic),
Self::Bc5RgUnorm => ( noaa, basic),
Self::Bc5RgSnorm => ( noaa, basic),
Self::Bc6hRgbUfloat => ( noaa, basic),
Self::Bc6hRgbFloat => ( noaa, basic),
Self::Bc7RgbaUnorm => ( noaa, basic),
Self::Bc7RgbaUnormSrgb => ( noaa, basic),
Self::Etc2Rgb8Unorm => ( noaa, basic),
Self::Etc2Rgb8UnormSrgb => ( noaa, basic),
Self::Etc2Rgb8A1Unorm => ( noaa, basic),
Self::Etc2Rgb8A1UnormSrgb => ( noaa, basic),
Self::Etc2Rgba8Unorm => ( noaa, basic),
Self::Etc2Rgba8UnormSrgb => ( noaa, basic),
Self::EacR11Unorm => ( noaa, basic),
Self::EacR11Snorm => ( noaa, basic),
Self::EacRg11Unorm => ( noaa, basic),
Self::EacRg11Snorm => ( noaa, basic),
Self::Astc { .. } => ( noaa, basic),
};
let is_filterable =
self.sample_type(None) == Some(TextureSampleType::Float { filterable: true });
flags.set(TextureFormatFeatureFlags::FILTERABLE, is_filterable);
flags.set(TextureFormatFeatureFlags::BLENDABLE, is_filterable);
TextureFormatFeatures {
allowed_usages,
flags,
}
}
/// Returns the sample type compatible with this format and aspect
///
/// Returns `None` only if the format is combined depth-stencil
/// and `TextureAspect::All` or no `aspect` was provided
pub fn sample_type(&self, aspect: Option<TextureAspect>) -> Option<TextureSampleType> {
let float = TextureSampleType::Float { filterable: true };
let unfilterable_float = TextureSampleType::Float { filterable: false };
let depth = TextureSampleType::Depth;
let uint = TextureSampleType::Uint;
let sint = TextureSampleType::Sint;
match *self {
Self::R8Unorm
| Self::R8Snorm
| Self::Rg8Unorm
| Self::Rg8Snorm
| Self::Rgba8Unorm
| Self::Rgba8UnormSrgb
| Self::Rgba8Snorm
| Self::Bgra8Unorm
| Self::Bgra8UnormSrgb
| Self::R16Float
| Self::Rg16Float
| Self::Rgba16Float
| Self::Rgb10a2Unorm
| Self::Rg11b10Float => Some(float),
Self::R32Float | Self::Rg32Float | Self::Rgba32Float => Some(unfilterable_float),
Self::R8Uint
| Self::Rg8Uint
| Self::Rgba8Uint
| Self::R16Uint
| Self::Rg16Uint
| Self::Rgba16Uint
| Self::R32Uint
| Self::Rg32Uint
| Self::Rgba32Uint => Some(uint),
Self::R8Sint
| Self::Rg8Sint
| Self::Rgba8Sint
| Self::R16Sint
| Self::Rg16Sint
| Self::Rgba16Sint
| Self::R32Sint
| Self::Rg32Sint
| Self::Rgba32Sint => Some(sint),
Self::Stencil8 => Some(uint),
Self::Depth16Unorm | Self::Depth24Plus | Self::Depth32Float => Some(depth),
Self::Depth24PlusStencil8 | Self::Depth32FloatStencil8 => match aspect {
None | Some(TextureAspect::All) => None,
Some(TextureAspect::DepthOnly) => Some(depth),
Some(TextureAspect::StencilOnly) => Some(uint),
},
Self::R16Unorm
| Self::R16Snorm
| Self::Rg16Unorm
| Self::Rg16Snorm
| Self::Rgba16Unorm
| Self::Rgba16Snorm => Some(float),
Self::Rgb9e5Ufloat => Some(float),
Self::Bc1RgbaUnorm
| Self::Bc1RgbaUnormSrgb
| Self::Bc2RgbaUnorm
| Self::Bc2RgbaUnormSrgb
| Self::Bc3RgbaUnorm
| Self::Bc3RgbaUnormSrgb
| Self::Bc4RUnorm
| Self::Bc4RSnorm
| Self::Bc5RgUnorm
| Self::Bc5RgSnorm
| Self::Bc6hRgbUfloat
| Self::Bc6hRgbFloat
| Self::Bc7RgbaUnorm
| Self::Bc7RgbaUnormSrgb => Some(float),
Self::Etc2Rgb8Unorm
| Self::Etc2Rgb8UnormSrgb
| Self::Etc2Rgb8A1Unorm
| Self::Etc2Rgb8A1UnormSrgb
| Self::Etc2Rgba8Unorm
| Self::Etc2Rgba8UnormSrgb
| Self::EacR11Unorm
| Self::EacR11Snorm
| Self::EacRg11Unorm
| Self::EacRg11Snorm => Some(float),
Self::Astc { .. } => Some(float),
}
}
/// Returns the [texel block size](https://gpuweb.github.io/gpuweb/#texel-block-size)
/// of this format.
///
/// Returns `None` if any of the following are true:
/// - the format is combined depth-stencil and no `aspect` was provided
/// - the format is `Depth24Plus`
/// - the format is `Depth24PlusStencil8` and `aspect` is depth.
pub fn block_size(&self, aspect: Option<TextureAspect>) -> Option<u32> {
match *self {
Self::R8Unorm | Self::R8Snorm | Self::R8Uint | Self::R8Sint => Some(1),
Self::Rg8Unorm | Self::Rg8Snorm | Self::Rg8Uint | Self::Rg8Sint => Some(2),
Self::R16Unorm | Self::R16Snorm | Self::R16Uint | Self::R16Sint | Self::R16Float => {
Some(2)
}
Self::Rgba8Unorm
| Self::Rgba8UnormSrgb
| Self::Rgba8Snorm
| Self::Rgba8Uint
| Self::Rgba8Sint
| Self::Bgra8Unorm
| Self::Bgra8UnormSrgb => Some(4),
Self::Rg16Unorm
| Self::Rg16Snorm
| Self::Rg16Uint
| Self::Rg16Sint
| Self::Rg16Float => Some(4),
Self::R32Uint | Self::R32Sint | Self::R32Float => Some(4),
Self::Rgb9e5Ufloat | Self::Rgb10a2Unorm | Self::Rg11b10Float => Some(4),
Self::Rgba16Unorm
| Self::Rgba16Snorm
| Self::Rgba16Uint
| Self::Rgba16Sint
| Self::Rgba16Float => Some(8),
Self::Rg32Uint | Self::Rg32Sint | Self::Rg32Float => Some(8),
Self::Rgba32Uint | Self::Rgba32Sint | Self::Rgba32Float => Some(16),
Self::Stencil8 => Some(1),
Self::Depth16Unorm => Some(2),
Self::Depth32Float => Some(4),
Self::Depth24Plus => None,
Self::Depth24PlusStencil8 => match aspect {
None | Some(TextureAspect::All) => None,
Some(TextureAspect::DepthOnly) => None,
Some(TextureAspect::StencilOnly) => Some(1),
},
Self::Depth32FloatStencil8 => match aspect {
None | Some(TextureAspect::All) => None,
Some(TextureAspect::DepthOnly) => Some(4),
Some(TextureAspect::StencilOnly) => Some(1),
},
Self::Bc1RgbaUnorm | Self::Bc1RgbaUnormSrgb | Self::Bc4RUnorm | Self::Bc4RSnorm => {
Some(8)
}
Self::Bc2RgbaUnorm
| Self::Bc2RgbaUnormSrgb
| Self::Bc3RgbaUnorm
| Self::Bc3RgbaUnormSrgb
| Self::Bc5RgUnorm
| Self::Bc5RgSnorm
| Self::Bc6hRgbUfloat
| Self::Bc6hRgbFloat
| Self::Bc7RgbaUnorm
| Self::Bc7RgbaUnormSrgb => Some(16),
Self::Etc2Rgb8Unorm
| Self::Etc2Rgb8UnormSrgb
| Self::Etc2Rgb8A1Unorm
| Self::Etc2Rgb8A1UnormSrgb
| Self::EacR11Unorm
| Self::EacR11Snorm => Some(8),
Self::Etc2Rgba8Unorm
| Self::Etc2Rgba8UnormSrgb
| Self::EacRg11Unorm
| Self::EacRg11Snorm => Some(16),
Self::Astc { .. } => Some(16),
}
}
/// Strips the `Srgb` suffix from the given texture format.
pub fn remove_srgb_suffix(&self) -> TextureFormat {
match *self {
Self::Rgba8UnormSrgb => Self::Rgba8Unorm,
Self::Bgra8UnormSrgb => Self::Bgra8Unorm,
Self::Bc1RgbaUnormSrgb => Self::Bc1RgbaUnorm,
Self::Bc2RgbaUnormSrgb => Self::Bc2RgbaUnorm,
Self::Bc3RgbaUnormSrgb => Self::Bc3RgbaUnorm,
Self::Bc7RgbaUnormSrgb => Self::Bc7RgbaUnorm,
Self::Etc2Rgb8UnormSrgb => Self::Etc2Rgb8Unorm,
Self::Etc2Rgb8A1UnormSrgb => Self::Etc2Rgb8A1Unorm,
Self::Etc2Rgba8UnormSrgb => Self::Etc2Rgba8Unorm,
Self::Astc {
block,
channel: AstcChannel::UnormSrgb,
} => Self::Astc {
block,
channel: AstcChannel::Unorm,
},
_ => *self,
}
}
/// Adds an `Srgb` suffix to the given texture format, if the format supports it.
pub fn add_srgb_suffix(&self) -> TextureFormat {
match *self {
Self::Rgba8Unorm => Self::Rgba8UnormSrgb,
Self::Bgra8Unorm => Self::Bgra8UnormSrgb,
Self::Bc1RgbaUnorm => Self::Bc1RgbaUnormSrgb,
Self::Bc2RgbaUnorm => Self::Bc2RgbaUnormSrgb,
Self::Bc3RgbaUnorm => Self::Bc3RgbaUnormSrgb,
Self::Bc7RgbaUnorm => Self::Bc7RgbaUnormSrgb,
Self::Etc2Rgb8Unorm => Self::Etc2Rgb8UnormSrgb,
Self::Etc2Rgb8A1Unorm => Self::Etc2Rgb8A1UnormSrgb,
Self::Etc2Rgba8Unorm => Self::Etc2Rgba8UnormSrgb,
Self::Astc {
block,
channel: AstcChannel::Unorm,
} => Self::Astc {
block,
channel: AstcChannel::UnormSrgb,
},
_ => *self,
}
}
/// Returns `true` for srgb formats.
pub fn is_srgb(&self) -> bool {
*self != self.remove_srgb_suffix()
}
}
#[test]
fn texture_format_serialize() {
assert_eq!(
serde_json::to_string(&TextureFormat::R8Unorm).unwrap(),
"\"r8unorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::R8Snorm).unwrap(),
"\"r8snorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::R8Uint).unwrap(),
"\"r8uint\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::R8Sint).unwrap(),
"\"r8sint\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::R16Uint).unwrap(),
"\"r16uint\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::R16Sint).unwrap(),
"\"r16sint\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::R16Unorm).unwrap(),
"\"r16unorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::R16Snorm).unwrap(),
"\"r16snorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::R16Float).unwrap(),
"\"r16float\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rg8Unorm).unwrap(),
"\"rg8unorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rg8Snorm).unwrap(),
"\"rg8snorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rg8Uint).unwrap(),
"\"rg8uint\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rg8Sint).unwrap(),
"\"rg8sint\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::R32Uint).unwrap(),
"\"r32uint\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::R32Sint).unwrap(),
"\"r32sint\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::R32Float).unwrap(),
"\"r32float\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rg16Uint).unwrap(),
"\"rg16uint\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rg16Sint).unwrap(),
"\"rg16sint\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rg16Unorm).unwrap(),
"\"rg16unorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rg16Snorm).unwrap(),
"\"rg16snorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rg16Float).unwrap(),
"\"rg16float\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rgba8Unorm).unwrap(),
"\"rgba8unorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rgba8UnormSrgb).unwrap(),
"\"rgba8unorm-srgb\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rgba8Snorm).unwrap(),
"\"rgba8snorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rgba8Uint).unwrap(),
"\"rgba8uint\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rgba8Sint).unwrap(),
"\"rgba8sint\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Bgra8Unorm).unwrap(),
"\"bgra8unorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Bgra8UnormSrgb).unwrap(),
"\"bgra8unorm-srgb\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rgb10a2Unorm).unwrap(),
"\"rgb10a2unorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rg11b10Float).unwrap(),
"\"rg11b10ufloat\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rg32Uint).unwrap(),
"\"rg32uint\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rg32Sint).unwrap(),
"\"rg32sint\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rg32Float).unwrap(),
"\"rg32float\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rgba16Uint).unwrap(),
"\"rgba16uint\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rgba16Sint).unwrap(),
"\"rgba16sint\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rgba16Unorm).unwrap(),
"\"rgba16unorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rgba16Snorm).unwrap(),
"\"rgba16snorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rgba16Float).unwrap(),
"\"rgba16float\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rgba32Uint).unwrap(),
"\"rgba32uint\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rgba32Sint).unwrap(),
"\"rgba32sint\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rgba32Float).unwrap(),
"\"rgba32float\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Stencil8).unwrap(),
"\"stencil8\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Depth32Float).unwrap(),
"\"depth32float\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Depth16Unorm).unwrap(),
"\"depth16unorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Depth32FloatStencil8).unwrap(),
"\"depth32float-stencil8\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Depth24Plus).unwrap(),
"\"depth24plus\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Depth24PlusStencil8).unwrap(),
"\"depth24plus-stencil8\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Rgb9e5Ufloat).unwrap(),
"\"rgb9e5ufloat\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Bc1RgbaUnorm).unwrap(),
"\"bc1-rgba-unorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Bc1RgbaUnormSrgb).unwrap(),
"\"bc1-rgba-unorm-srgb\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Bc2RgbaUnorm).unwrap(),
"\"bc2-rgba-unorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Bc2RgbaUnormSrgb).unwrap(),
"\"bc2-rgba-unorm-srgb\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Bc3RgbaUnorm).unwrap(),
"\"bc3-rgba-unorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Bc3RgbaUnormSrgb).unwrap(),
"\"bc3-rgba-unorm-srgb\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Bc4RUnorm).unwrap(),
"\"bc4-r-unorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Bc4RSnorm).unwrap(),
"\"bc4-r-snorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Bc5RgUnorm).unwrap(),
"\"bc5-rg-unorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Bc5RgSnorm).unwrap(),
"\"bc5-rg-snorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Bc6hRgbUfloat).unwrap(),
"\"bc6h-rgb-ufloat\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Bc6hRgbFloat).unwrap(),
"\"bc6h-rgb-float\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Bc7RgbaUnorm).unwrap(),
"\"bc7-rgba-unorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Bc7RgbaUnormSrgb).unwrap(),
"\"bc7-rgba-unorm-srgb\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Etc2Rgb8Unorm).unwrap(),
"\"etc2-rgb8unorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Etc2Rgb8UnormSrgb).unwrap(),
"\"etc2-rgb8unorm-srgb\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Etc2Rgb8A1Unorm).unwrap(),
"\"etc2-rgb8a1unorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Etc2Rgb8A1UnormSrgb).unwrap(),
"\"etc2-rgb8a1unorm-srgb\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Etc2Rgba8Unorm).unwrap(),
"\"etc2-rgba8unorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::Etc2Rgba8UnormSrgb).unwrap(),
"\"etc2-rgba8unorm-srgb\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::EacR11Unorm).unwrap(),
"\"eac-r11unorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::EacR11Snorm).unwrap(),
"\"eac-r11snorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::EacRg11Unorm).unwrap(),
"\"eac-rg11unorm\"".to_string()
);
assert_eq!(
serde_json::to_string(&TextureFormat::EacRg11Snorm).unwrap(),
"\"eac-rg11snorm\"".to_string()
);
}
#[test]
fn texture_format_deserialize() {
assert_eq!(
serde_json::from_str::<TextureFormat>("\"r8unorm\"").unwrap(),
TextureFormat::R8Unorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"r8snorm\"").unwrap(),
TextureFormat::R8Snorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"r8uint\"").unwrap(),
TextureFormat::R8Uint
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"r8sint\"").unwrap(),
TextureFormat::R8Sint
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"r16uint\"").unwrap(),
TextureFormat::R16Uint
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"r16sint\"").unwrap(),
TextureFormat::R16Sint
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"r16unorm\"").unwrap(),
TextureFormat::R16Unorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"r16snorm\"").unwrap(),
TextureFormat::R16Snorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"r16float\"").unwrap(),
TextureFormat::R16Float
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rg8unorm\"").unwrap(),
TextureFormat::Rg8Unorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rg8snorm\"").unwrap(),
TextureFormat::Rg8Snorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rg8uint\"").unwrap(),
TextureFormat::Rg8Uint
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rg8sint\"").unwrap(),
TextureFormat::Rg8Sint
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"r32uint\"").unwrap(),
TextureFormat::R32Uint
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"r32sint\"").unwrap(),
TextureFormat::R32Sint
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"r32float\"").unwrap(),
TextureFormat::R32Float
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rg16uint\"").unwrap(),
TextureFormat::Rg16Uint
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rg16sint\"").unwrap(),
TextureFormat::Rg16Sint
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rg16unorm\"").unwrap(),
TextureFormat::Rg16Unorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rg16snorm\"").unwrap(),
TextureFormat::Rg16Snorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rg16float\"").unwrap(),
TextureFormat::Rg16Float
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rgba8unorm\"").unwrap(),
TextureFormat::Rgba8Unorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rgba8unorm-srgb\"").unwrap(),
TextureFormat::Rgba8UnormSrgb
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rgba8snorm\"").unwrap(),
TextureFormat::Rgba8Snorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rgba8uint\"").unwrap(),
TextureFormat::Rgba8Uint
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rgba8sint\"").unwrap(),
TextureFormat::Rgba8Sint
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"bgra8unorm\"").unwrap(),
TextureFormat::Bgra8Unorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"bgra8unorm-srgb\"").unwrap(),
TextureFormat::Bgra8UnormSrgb
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rgb10a2unorm\"").unwrap(),
TextureFormat::Rgb10a2Unorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rg11b10ufloat\"").unwrap(),
TextureFormat::Rg11b10Float
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rg32uint\"").unwrap(),
TextureFormat::Rg32Uint
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rg32sint\"").unwrap(),
TextureFormat::Rg32Sint
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rg32float\"").unwrap(),
TextureFormat::Rg32Float
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rgba16uint\"").unwrap(),
TextureFormat::Rgba16Uint
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rgba16sint\"").unwrap(),
TextureFormat::Rgba16Sint
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rgba16unorm\"").unwrap(),
TextureFormat::Rgba16Unorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rgba16snorm\"").unwrap(),
TextureFormat::Rgba16Snorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rgba16float\"").unwrap(),
TextureFormat::Rgba16Float
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rgba32uint\"").unwrap(),
TextureFormat::Rgba32Uint
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rgba32sint\"").unwrap(),
TextureFormat::Rgba32Sint
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rgba32float\"").unwrap(),
TextureFormat::Rgba32Float
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"stencil8\"").unwrap(),
TextureFormat::Stencil8
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"depth32float\"").unwrap(),
TextureFormat::Depth32Float
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"depth16unorm\"").unwrap(),
TextureFormat::Depth16Unorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"depth32float-stencil8\"").unwrap(),
TextureFormat::Depth32FloatStencil8
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"depth24plus\"").unwrap(),
TextureFormat::Depth24Plus
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"depth24plus-stencil8\"").unwrap(),
TextureFormat::Depth24PlusStencil8
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"rgb9e5ufloat\"").unwrap(),
TextureFormat::Rgb9e5Ufloat
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"bc1-rgba-unorm\"").unwrap(),
TextureFormat::Bc1RgbaUnorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"bc1-rgba-unorm-srgb\"").unwrap(),
TextureFormat::Bc1RgbaUnormSrgb
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"bc2-rgba-unorm\"").unwrap(),
TextureFormat::Bc2RgbaUnorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"bc2-rgba-unorm-srgb\"").unwrap(),
TextureFormat::Bc2RgbaUnormSrgb
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"bc3-rgba-unorm\"").unwrap(),
TextureFormat::Bc3RgbaUnorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"bc3-rgba-unorm-srgb\"").unwrap(),
TextureFormat::Bc3RgbaUnormSrgb
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"bc4-r-unorm\"").unwrap(),
TextureFormat::Bc4RUnorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"bc4-r-snorm\"").unwrap(),
TextureFormat::Bc4RSnorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"bc5-rg-unorm\"").unwrap(),
TextureFormat::Bc5RgUnorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"bc5-rg-snorm\"").unwrap(),
TextureFormat::Bc5RgSnorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"bc6h-rgb-ufloat\"").unwrap(),
TextureFormat::Bc6hRgbUfloat
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"bc6h-rgb-float\"").unwrap(),
TextureFormat::Bc6hRgbFloat
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"bc7-rgba-unorm\"").unwrap(),
TextureFormat::Bc7RgbaUnorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"bc7-rgba-unorm-srgb\"").unwrap(),
TextureFormat::Bc7RgbaUnormSrgb
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"etc2-rgb8unorm\"").unwrap(),
TextureFormat::Etc2Rgb8Unorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"etc2-rgb8unorm-srgb\"").unwrap(),
TextureFormat::Etc2Rgb8UnormSrgb
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"etc2-rgb8a1unorm\"").unwrap(),
TextureFormat::Etc2Rgb8A1Unorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"etc2-rgb8a1unorm-srgb\"").unwrap(),
TextureFormat::Etc2Rgb8A1UnormSrgb
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"etc2-rgba8unorm\"").unwrap(),
TextureFormat::Etc2Rgba8Unorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"etc2-rgba8unorm-srgb\"").unwrap(),
TextureFormat::Etc2Rgba8UnormSrgb
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"eac-r11unorm\"").unwrap(),
TextureFormat::EacR11Unorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"eac-r11snorm\"").unwrap(),
TextureFormat::EacR11Snorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"eac-rg11unorm\"").unwrap(),
TextureFormat::EacRg11Unorm
);
assert_eq!(
serde_json::from_str::<TextureFormat>("\"eac-rg11snorm\"").unwrap(),
TextureFormat::EacRg11Snorm
);
}
bitflags::bitflags! {
/// Color write mask. Disabled color channels will not be written to.
///
/// Corresponds to [WebGPU `GPUColorWriteFlags`](
/// https://gpuweb.github.io/gpuweb/#typedefdef-gpucolorwriteflags).
#[repr(transparent)]
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct ColorWrites: u32 {
/// Enable red channel writes
const RED = 1 << 0;
/// Enable green channel writes
const GREEN = 1 << 1;
/// Enable blue channel writes
const BLUE = 1 << 2;
/// Enable alpha channel writes
const ALPHA = 1 << 3;
/// Enable red, green, and blue channel writes
const COLOR = Self::RED.bits() | Self::GREEN.bits() | Self::BLUE.bits();
/// Enable writes to all channels.
const ALL = Self::RED.bits() | Self::GREEN.bits() | Self::BLUE.bits() | Self::ALPHA.bits();
}
}
impl_bitflags!(ColorWrites);
impl Default for ColorWrites {
fn default() -> Self {
Self::ALL
}
}
/// Passed to `Device::poll` to control how and if it should block.
#[derive(Clone)]
pub enum Maintain<T> {
/// On native backends, block until the given submission has
/// completed execution, and any callbacks have been invoked.
///
/// On the web, this has no effect. Callbacks are invoked from the
/// window event loop.
WaitForSubmissionIndex(T),
/// Same as WaitForSubmissionIndex but waits for the most recent submission.
Wait,
/// Check the device for a single time without blocking.
Poll,
}
impl<T> Maintain<T> {
/// This maintain represents a wait of some kind.
pub fn is_wait(&self) -> bool {
match *self {
Self::WaitForSubmissionIndex(..) | Self::Wait => true,
Self::Poll => false,
}
}
/// Map on the wait index type.
pub fn map_index<U, F>(self, func: F) -> Maintain<U>
where
F: FnOnce(T) -> U,
{
match self {
Self::WaitForSubmissionIndex(i) => Maintain::WaitForSubmissionIndex(func(i)),
Self::Wait => Maintain::Wait,
Self::Poll => Maintain::Poll,
}
}
}
/// State of the stencil operation (fixed-pipeline stage).
///
/// For use in [`DepthStencilState`].
///
/// Corresponds to a portion of [WebGPU `GPUDepthStencilState`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpudepthstencilstate).
#[repr(C)]
#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct StencilState {
/// Front face mode.
pub front: StencilFaceState,
/// Back face mode.
pub back: StencilFaceState,
/// Stencil values are AND'd with this mask when reading and writing from the stencil buffer. Only low 8 bits are used.
pub read_mask: u32,
/// Stencil values are AND'd with this mask when writing to the stencil buffer. Only low 8 bits are used.
pub write_mask: u32,
}
impl StencilState {
/// Returns true if the stencil test is enabled.
pub fn is_enabled(&self) -> bool {
(self.front != StencilFaceState::IGNORE || self.back != StencilFaceState::IGNORE)
&& (self.read_mask != 0 || self.write_mask != 0)
}
/// Returns true if the state doesn't mutate the target values.
pub fn is_read_only(&self, cull_mode: Option<Face>) -> bool {
// The rules are defined in step 7 of the "Device timeline initialization steps"
// subsection of the "Render Pipeline Creation" section of WebGPU
// (link to the section: https://gpuweb.github.io/gpuweb/#render-pipeline-creation)
if self.write_mask == 0 {
return true;
}
let front_ro = cull_mode == Some(Face::Front) || self.front.is_read_only();
let back_ro = cull_mode == Some(Face::Back) || self.back.is_read_only();
front_ro && back_ro
}
/// Returns true if the stencil state uses the reference value for testing.
pub fn needs_ref_value(&self) -> bool {
self.front.needs_ref_value() || self.back.needs_ref_value()
}
}
/// Describes the biasing setting for the depth target.
///
/// For use in [`DepthStencilState`].
///
/// Corresponds to a portion of [WebGPU `GPUDepthStencilState`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpudepthstencilstate).
#[repr(C)]
#[derive(Clone, Copy, Debug, Default)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct DepthBiasState {
/// Constant depth biasing factor, in basic units of the depth format.
pub constant: i32,
/// Slope depth biasing factor.
pub slope_scale: f32,
/// Depth bias clamp value (absolute).
pub clamp: f32,
}
impl DepthBiasState {
/// Returns true if the depth biasing is enabled.
pub fn is_enabled(&self) -> bool {
self.constant != 0 || self.slope_scale != 0.0
}
}
impl Hash for DepthBiasState {
fn hash<H: Hasher>(&self, state: &mut H) {
self.constant.hash(state);
self.slope_scale.to_bits().hash(state);
self.clamp.to_bits().hash(state);
}
}
impl PartialEq for DepthBiasState {
fn eq(&self, other: &Self) -> bool {
(self.constant == other.constant)
&& (self.slope_scale.to_bits() == other.slope_scale.to_bits())
&& (self.clamp.to_bits() == other.clamp.to_bits())
}
}
impl Eq for DepthBiasState {}
/// Describes the depth/stencil state in a render pipeline.
///
/// Corresponds to [WebGPU `GPUDepthStencilState`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpudepthstencilstate).
#[repr(C)]
#[derive(Clone, Debug, Hash, PartialEq, Eq)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct DepthStencilState {
/// Format of the depth/stencil buffer, must be special depth format. Must match the the format
/// of the depth/stencil attachment in [`CommandEncoder::begin_render_pass`][CEbrp].
///
/// [CEbrp]: ../wgpu/struct.CommandEncoder.html#method.begin_render_pass
pub format: TextureFormat,
/// If disabled, depth will not be written to.
pub depth_write_enabled: bool,
/// Comparison function used to compare depth values in the depth test.
pub depth_compare: CompareFunction,
/// Stencil state.
#[cfg_attr(any(feature = "trace", feature = "replay"), serde(default))]
pub stencil: StencilState,
/// Depth bias state.
#[cfg_attr(any(feature = "trace", feature = "replay"), serde(default))]
pub bias: DepthBiasState,
}
impl DepthStencilState {
/// Returns true if the depth testing is enabled.
pub fn is_depth_enabled(&self) -> bool {
self.depth_compare != CompareFunction::Always || self.depth_write_enabled
}
/// Returns true if the state doesn't mutate the depth buffer.
pub fn is_depth_read_only(&self) -> bool {
!self.depth_write_enabled
}
/// Returns true if the state doesn't mutate the stencil.
pub fn is_stencil_read_only(&self, cull_mode: Option<Face>) -> bool {
self.stencil.is_read_only(cull_mode)
}
/// Returns true if the state doesn't mutate either depth or stencil of the target.
pub fn is_read_only(&self, cull_mode: Option<Face>) -> bool {
self.is_depth_read_only() && self.is_stencil_read_only(cull_mode)
}
}
/// Format of indices used with pipeline.
///
/// Corresponds to [WebGPU `GPUIndexFormat`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gpuindexformat).
#[repr(C)]
#[derive(Copy, Clone, Debug, Default, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "kebab-case"))]
pub enum IndexFormat {
/// Indices are 16 bit unsigned integers.
Uint16 = 0,
/// Indices are 32 bit unsigned integers.
#[default]
Uint32 = 1,
}
/// Operation to perform on the stencil value.
///
/// Corresponds to [WebGPU `GPUStencilOperation`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gpustenciloperation).
#[repr(C)]
#[derive(Copy, Clone, Debug, Default, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "kebab-case"))]
pub enum StencilOperation {
/// Keep stencil value unchanged.
#[default]
Keep = 0,
/// Set stencil value to zero.
Zero = 1,
/// Replace stencil value with value provided in most recent call to
/// [`RenderPass::set_stencil_reference`][RPssr].
///
/// [RPssr]: ../wgpu/struct.RenderPass.html#method.set_stencil_reference
Replace = 2,
/// Bitwise inverts stencil value.
Invert = 3,
/// Increments stencil value by one, clamping on overflow.
IncrementClamp = 4,
/// Decrements stencil value by one, clamping on underflow.
DecrementClamp = 5,
/// Increments stencil value by one, wrapping on overflow.
IncrementWrap = 6,
/// Decrements stencil value by one, wrapping on underflow.
DecrementWrap = 7,
}
/// Describes stencil state in a render pipeline.
///
/// If you are not using stencil state, set this to [`StencilFaceState::IGNORE`].
///
/// Corresponds to [WebGPU `GPUStencilFaceState`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpustencilfacestate).
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "camelCase"))]
pub struct StencilFaceState {
/// Comparison function that determines if the fail_op or pass_op is used on the stencil buffer.
pub compare: CompareFunction,
/// Operation that is preformed when stencil test fails.
pub fail_op: StencilOperation,
/// Operation that is performed when depth test fails but stencil test succeeds.
pub depth_fail_op: StencilOperation,
/// Operation that is performed when stencil test success.
pub pass_op: StencilOperation,
}
impl StencilFaceState {
/// Ignore the stencil state for the face.
pub const IGNORE: Self = StencilFaceState {
compare: CompareFunction::Always,
fail_op: StencilOperation::Keep,
depth_fail_op: StencilOperation::Keep,
pass_op: StencilOperation::Keep,
};
/// Returns true if the face state uses the reference value for testing or operation.
pub fn needs_ref_value(&self) -> bool {
self.compare.needs_ref_value()
|| self.fail_op == StencilOperation::Replace
|| self.depth_fail_op == StencilOperation::Replace
|| self.pass_op == StencilOperation::Replace
}
/// Returns true if the face state doesn't mutate the target values.
pub fn is_read_only(&self) -> bool {
self.pass_op == StencilOperation::Keep
&& self.depth_fail_op == StencilOperation::Keep
&& self.fail_op == StencilOperation::Keep
}
}
impl Default for StencilFaceState {
fn default() -> Self {
Self::IGNORE
}
}
/// Comparison function used for depth and stencil operations.
///
/// Corresponds to [WebGPU `GPUCompareFunction`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gpucomparefunction).
#[repr(C)]
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "kebab-case"))]
pub enum CompareFunction {
/// Function never passes
Never = 1,
/// Function passes if new value less than existing value
Less = 2,
/// Function passes if new value is equal to existing value. When using
/// this compare function, make sure to mark your Vertex Shader's `@builtin(position)`
/// output as `@invariant` to prevent artifacting.
Equal = 3,
/// Function passes if new value is less than or equal to existing value
LessEqual = 4,
/// Function passes if new value is greater than existing value
Greater = 5,
/// Function passes if new value is not equal to existing value. When using
/// this compare function, make sure to mark your Vertex Shader's `@builtin(position)`
/// output as `@invariant` to prevent artifacting.
NotEqual = 6,
/// Function passes if new value is greater than or equal to existing value
GreaterEqual = 7,
/// Function always passes
Always = 8,
}
impl CompareFunction {
/// Returns true if the comparison depends on the reference value.
pub fn needs_ref_value(self) -> bool {
match self {
Self::Never | Self::Always => false,
_ => true,
}
}
}
/// Whether a vertex buffer is indexed by vertex or by instance.
///
/// Consider a call to [`RenderPass::draw`] like this:
///
/// ```ignore
/// render_pass.draw(vertices, instances)
/// ```
///
/// where `vertices` is a `Range<u32>` of vertex indices, and
/// `instances` is a `Range<u32>` of instance indices.
///
/// For this call, `wgpu` invokes the vertex shader entry point once
/// for every possible `(v, i)` pair, where `v` is drawn from
/// `vertices` and `i` is drawn from `instances`. These invocations
/// may happen in any order, and will usually run in parallel.
///
/// Each vertex buffer has a step mode, established by the
/// [`step_mode`] field of its [`VertexBufferLayout`], given when the
/// pipeline was created. Buffers whose step mode is [`Vertex`] use
/// `v` as the index into their contents, whereas buffers whose step
/// mode is [`Instance`] use `i`. The indicated buffer element then
/// contributes zero or more attribute values for the `(v, i)` vertex
/// shader invocation to use, based on the [`VertexBufferLayout`]'s
/// [`attributes`] list.
///
/// You can visualize the results from all these vertex shader
/// invocations as a matrix with a row for each `i` from `instances`,
/// and with a column for each `v` from `vertices`. In one sense, `v`
/// and `i` are symmetrical: both are used to index vertex buffers and
/// provide attribute values. But the key difference between `v` and
/// `i` is that line and triangle primitives are built from the values
/// of each row, along which `i` is constant and `v` varies, not the
/// columns.
///
/// An indexed draw call works similarly:
///
/// ```ignore
/// render_pass.draw_indexed(indices, base_vertex, instances)
/// ```
///
/// The only difference is that `v` values are drawn from the contents
/// of the index buffer&mdash;specifically, the subrange of the index
/// buffer given by `indices`&mdash;instead of simply being sequential
/// integers, as they are in a `draw` call.
///
/// A non-instanced call, where `instances` is `0..1`, is simply a
/// matrix with only one row.
///
/// Corresponds to [WebGPU `GPUVertexStepMode`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gpuvertexstepmode).
///
/// [`RenderPass::draw`]: ../wgpu/struct.RenderPass.html#method.draw
/// [`VertexBufferLayout`]: ../wgpu/struct.VertexBufferLayout.html
/// [`step_mode`]: ../wgpu/struct.VertexBufferLayout.html#structfield.step_mode
/// [`attributes`]: ../wgpu/struct.VertexBufferLayout.html#structfield.attributes
/// [`Vertex`]: VertexStepMode::Vertex
/// [`Instance`]: VertexStepMode::Instance
#[repr(C)]
#[derive(Copy, Clone, Debug, Default, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "kebab-case"))]
pub enum VertexStepMode {
/// Vertex data is advanced every vertex.
#[default]
Vertex = 0,
/// Vertex data is advanced every instance.
Instance = 1,
}
/// Vertex inputs (attributes) to shaders.
///
/// Arrays of these can be made with the [`vertex_attr_array`]
/// macro. Vertex attributes are assumed to be tightly packed.
///
/// Corresponds to [WebGPU `GPUVertexAttribute`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpuvertexattribute).
///
/// [`vertex_attr_array`]: ../wgpu/macro.vertex_attr_array.html
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "camelCase"))]
pub struct VertexAttribute {
/// Format of the input
pub format: VertexFormat,
/// Byte offset of the start of the input
pub offset: BufferAddress,
/// Location for this input. Must match the location in the shader.
pub shader_location: ShaderLocation,
}
/// Vertex Format for a [`VertexAttribute`] (input).
///
/// Corresponds to [WebGPU `GPUVertexFormat`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gpuvertexformat).
#[repr(C)]
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "lowercase"))]
pub enum VertexFormat {
/// Two unsigned bytes (u8). `uvec2` in shaders.
Uint8x2 = 0,
/// Four unsigned bytes (u8). `uvec4` in shaders.
Uint8x4 = 1,
/// Two signed bytes (i8). `ivec2` in shaders.
Sint8x2 = 2,
/// Four signed bytes (i8). `ivec4` in shaders.
Sint8x4 = 3,
/// Two unsigned bytes (u8). [0, 255] converted to float [0, 1] `vec2` in shaders.
Unorm8x2 = 4,
/// Four unsigned bytes (u8). [0, 255] converted to float [0, 1] `vec4` in shaders.
Unorm8x4 = 5,
/// Two signed bytes (i8). [-127, 127] converted to float [-1, 1] `vec2` in shaders.
Snorm8x2 = 6,
/// Four signed bytes (i8). [-127, 127] converted to float [-1, 1] `vec4` in shaders.
Snorm8x4 = 7,
/// Two unsigned shorts (u16). `uvec2` in shaders.
Uint16x2 = 8,
/// Four unsigned shorts (u16). `uvec4` in shaders.
Uint16x4 = 9,
/// Two signed shorts (i16). `ivec2` in shaders.
Sint16x2 = 10,
/// Four signed shorts (i16). `ivec4` in shaders.
Sint16x4 = 11,
/// Two unsigned shorts (u16). [0, 65535] converted to float [0, 1] `vec2` in shaders.
Unorm16x2 = 12,
/// Four unsigned shorts (u16). [0, 65535] converted to float [0, 1] `vec4` in shaders.
Unorm16x4 = 13,
/// Two signed shorts (i16). [-32767, 32767] converted to float [-1, 1] `vec2` in shaders.
Snorm16x2 = 14,
/// Four signed shorts (i16). [-32767, 32767] converted to float [-1, 1] `vec4` in shaders.
Snorm16x4 = 15,
/// Two half-precision floats (no Rust equiv). `vec2` in shaders.
Float16x2 = 16,
/// Four half-precision floats (no Rust equiv). `vec4` in shaders.
Float16x4 = 17,
/// One single-precision float (f32). `float` in shaders.
Float32 = 18,
/// Two single-precision floats (f32). `vec2` in shaders.
Float32x2 = 19,
/// Three single-precision floats (f32). `vec3` in shaders.
Float32x3 = 20,
/// Four single-precision floats (f32). `vec4` in shaders.
Float32x4 = 21,
/// One unsigned int (u32). `uint` in shaders.
Uint32 = 22,
/// Two unsigned ints (u32). `uvec2` in shaders.
Uint32x2 = 23,
/// Three unsigned ints (u32). `uvec3` in shaders.
Uint32x3 = 24,
/// Four unsigned ints (u32). `uvec4` in shaders.
Uint32x4 = 25,
/// One signed int (i32). `int` in shaders.
Sint32 = 26,
/// Two signed ints (i32). `ivec2` in shaders.
Sint32x2 = 27,
/// Three signed ints (i32). `ivec3` in shaders.
Sint32x3 = 28,
/// Four signed ints (i32). `ivec4` in shaders.
Sint32x4 = 29,
/// One double-precision float (f64). `double` in shaders. Requires [`Features::VERTEX_ATTRIBUTE_64BIT`].
Float64 = 30,
/// Two double-precision floats (f64). `dvec2` in shaders. Requires [`Features::VERTEX_ATTRIBUTE_64BIT`].
Float64x2 = 31,
/// Three double-precision floats (f64). `dvec3` in shaders. Requires [`Features::VERTEX_ATTRIBUTE_64BIT`].
Float64x3 = 32,
/// Four double-precision floats (f64). `dvec4` in shaders. Requires [`Features::VERTEX_ATTRIBUTE_64BIT`].
Float64x4 = 33,
}
impl VertexFormat {
/// Returns the byte size of the format.
pub const fn size(&self) -> u64 {
match self {
Self::Uint8x2 | Self::Sint8x2 | Self::Unorm8x2 | Self::Snorm8x2 => 2,
Self::Uint8x4
| Self::Sint8x4
| Self::Unorm8x4
| Self::Snorm8x4
| Self::Uint16x2
| Self::Sint16x2
| Self::Unorm16x2
| Self::Snorm16x2
| Self::Float16x2
| Self::Float32
| Self::Uint32
| Self::Sint32 => 4,
Self::Uint16x4
| Self::Sint16x4
| Self::Unorm16x4
| Self::Snorm16x4
| Self::Float16x4
| Self::Float32x2
| Self::Uint32x2
| Self::Sint32x2
| Self::Float64 => 8,
Self::Float32x3 | Self::Uint32x3 | Self::Sint32x3 => 12,
Self::Float32x4 | Self::Uint32x4 | Self::Sint32x4 | Self::Float64x2 => 16,
Self::Float64x3 => 24,
Self::Float64x4 => 32,
}
}
}
bitflags::bitflags! {
/// Different ways that you can use a buffer.
///
/// The usages determine what kind of memory the buffer is allocated from and what
/// actions the buffer can partake in.
///
/// Corresponds to [WebGPU `GPUBufferUsageFlags`](
/// https://gpuweb.github.io/gpuweb/#typedefdef-gpubufferusageflags).
#[repr(transparent)]
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct BufferUsages: u32 {
/// Allow a buffer to be mapped for reading using [`Buffer::map_async`] + [`Buffer::get_mapped_range`].
/// This does not include creating a buffer with [`BufferDescriptor::mapped_at_creation`] set.
///
/// If [`Features::MAPPABLE_PRIMARY_BUFFERS`] isn't enabled, the only other usage a buffer
/// may have is COPY_DST.
const MAP_READ = 1 << 0;
/// Allow a buffer to be mapped for writing using [`Buffer::map_async`] + [`Buffer::get_mapped_range_mut`].
/// This does not include creating a buffer with `mapped_at_creation` set.
///
/// If [`Features::MAPPABLE_PRIMARY_BUFFERS`] feature isn't enabled, the only other usage a buffer
/// may have is COPY_SRC.
const MAP_WRITE = 1 << 1;
/// Allow a buffer to be the source buffer for a [`CommandEncoder::copy_buffer_to_buffer`] or [`CommandEncoder::copy_buffer_to_texture`]
/// operation.
const COPY_SRC = 1 << 2;
/// Allow a buffer to be the destination buffer for a [`CommandEncoder::copy_buffer_to_buffer`], [`CommandEncoder::copy_texture_to_buffer`],
/// [`CommandEncoder::clear_buffer`] or [`Queue::write_buffer`] operation.
const COPY_DST = 1 << 3;
/// Allow a buffer to be the index buffer in a draw operation.
const INDEX = 1 << 4;
/// Allow a buffer to be the vertex buffer in a draw operation.
const VERTEX = 1 << 5;
/// Allow a buffer to be a [`BufferBindingType::Uniform`] inside a bind group.
const UNIFORM = 1 << 6;
/// Allow a buffer to be a [`BufferBindingType::Storage`] inside a bind group.
const STORAGE = 1 << 7;
/// Allow a buffer to be the indirect buffer in an indirect draw call.
const INDIRECT = 1 << 8;
/// Allow a buffer to be the destination buffer for a [`CommandEncoder::resolve_query_set`] operation.
const QUERY_RESOLVE = 1 << 9;
}
}
impl_bitflags!(BufferUsages);
/// Describes a [`Buffer`](../wgpu/struct.Buffer.html).
///
/// Corresponds to [WebGPU `GPUBufferDescriptor`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpubufferdescriptor).
#[repr(C)]
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct BufferDescriptor<L> {
/// Debug label of a buffer. This will show up in graphics debuggers for easy identification.
pub label: L,
/// Size of a buffer.
pub size: BufferAddress,
/// Usages of a buffer. If the buffer is used in any way that isn't specified here, the operation
/// will panic.
pub usage: BufferUsages,
/// Allows a buffer to be mapped immediately after they are made. It does not have to be [`BufferUsages::MAP_READ`] or
/// [`BufferUsages::MAP_WRITE`], all buffers are allowed to be mapped at creation.
///
/// If this is `true`, [`size`](#structfield.size) must be a multiple of
/// [`COPY_BUFFER_ALIGNMENT`].
pub mapped_at_creation: bool,
}
impl<L> BufferDescriptor<L> {
/// Takes a closure and maps the label of the buffer descriptor into another.
pub fn map_label<K>(&self, fun: impl FnOnce(&L) -> K) -> BufferDescriptor<K> {
BufferDescriptor {
label: fun(&self.label),
size: self.size,
usage: self.usage,
mapped_at_creation: self.mapped_at_creation,
}
}
}
/// Describes a [`CommandEncoder`](../wgpu/struct.CommandEncoder.html).
///
/// Corresponds to [WebGPU `GPUCommandEncoderDescriptor`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpucommandencoderdescriptor).
#[repr(C)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct CommandEncoderDescriptor<L> {
/// Debug label for the command encoder. This will show up in graphics debuggers for easy identification.
pub label: L,
}
impl<L> CommandEncoderDescriptor<L> {
/// Takes a closure and maps the label of the command encoder descriptor into another.
pub fn map_label<K>(&self, fun: impl FnOnce(&L) -> K) -> CommandEncoderDescriptor<K> {
CommandEncoderDescriptor {
label: fun(&self.label),
}
}
}
impl<T> Default for CommandEncoderDescriptor<Option<T>> {
fn default() -> Self {
Self { label: None }
}
}
/// Behavior of the presentation engine based on frame rate.
#[repr(C)]
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum PresentMode {
/// Chooses FifoRelaxed -> Fifo based on availability.
///
/// Because of the fallback behavior, it is supported everywhere.
AutoVsync = 0,
/// Chooses Immediate -> Mailbox -> Fifo (on web) based on availability.
///
/// Because of the fallback behavior, it is supported everywhere.
AutoNoVsync = 1,
/// Presentation frames are kept in a First-In-First-Out queue approximately 3 frames
/// long. Every vertical blanking period, the presentation engine will pop a frame
/// off the queue to display. If there is no frame to display, it will present the same
/// frame again until the next vblank.
///
/// When a present command is executed on the gpu, the presented image is added on the queue.
///
/// No tearing will be observed.
///
/// Calls to get_current_texture will block until there is a spot in the queue.
///
/// Supported on all platforms.
///
/// If you don't know what mode to choose, choose this mode. This is traditionally called "Vsync On".
#[default]
Fifo = 2,
/// Presentation frames are kept in a First-In-First-Out queue approximately 3 frames
/// long. Every vertical blanking period, the presentation engine will pop a frame
/// off the queue to display. If there is no frame to display, it will present the
/// same frame until there is a frame in the queue. The moment there is a frame in the
/// queue, it will immediately pop the frame off the queue.
///
/// When a present command is executed on the gpu, the presented image is added on the queue.
///
/// Tearing will be observed if frames last more than one vblank as the front buffer.
///
/// Calls to get_current_texture will block until there is a spot in the queue.
///
/// Supported on AMD on Vulkan.
///
/// This is traditionally called "Adaptive Vsync"
FifoRelaxed = 3,
/// Presentation frames are not queued at all. The moment a present command
/// is executed on the GPU, the presented image is swapped onto the front buffer
/// immediately.
///
/// Tearing can be observed.
///
/// Supported on most platforms except older DX12 and Wayland.
///
/// This is traditionally called "Vsync Off".
Immediate = 4,
/// Presentation frames are kept in a single-frame queue. Every vertical blanking period,
/// the presentation engine will pop a frame from the queue. If there is no frame to display,
/// it will present the same frame again until the next vblank.
///
/// When a present command is executed on the gpu, the frame will be put into the queue.
/// If there was already a frame in the queue, the new frame will _replace_ the old frame
/// on the queue.
///
/// No tearing will be observed.
///
/// Supported on DX11/12 on Windows 10, NVidia on Vulkan and Wayland on Vulkan.
///
/// This is traditionally called "Fast Vsync"
Mailbox = 5,
}
/// Specifies how the alpha channel of the textures should be handled during
/// compositing.
#[repr(C)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "camelCase"))]
pub enum CompositeAlphaMode {
/// Chooses either `Opaque` or `Inherit` automaticallydepending on the
/// `alpha_mode` that the current surface can support.
Auto = 0,
/// The alpha channel, if it exists, of the textures is ignored in the
/// compositing process. Instead, the textures is treated as if it has a
/// constant alpha of 1.0.
Opaque = 1,
/// The alpha channel, if it exists, of the textures is respected in the
/// compositing process. The non-alpha channels of the textures are
/// expected to already be multiplied by the alpha channel by the
/// application.
PreMultiplied = 2,
/// The alpha channel, if it exists, of the textures is respected in the
/// compositing process. The non-alpha channels of the textures are not
/// expected to already be multiplied by the alpha channel by the
/// application; instead, the compositor will multiply the non-alpha
/// channels of the texture by the alpha channel during compositing.
PostMultiplied = 3,
/// The alpha channel, if it exists, of the textures is unknown for processing
/// during compositing. Instead, the application is responsible for setting
/// the composite alpha blending mode using native WSI command. If not set,
/// then a platform-specific default will be used.
Inherit = 4,
}
impl Default for CompositeAlphaMode {
fn default() -> Self {
Self::Auto
}
}
bitflags::bitflags! {
/// Different ways that you can use a texture.
///
/// The usages determine what kind of memory the texture is allocated from and what
/// actions the texture can partake in.
///
/// Corresponds to [WebGPU `GPUTextureUsageFlags`](
/// https://gpuweb.github.io/gpuweb/#typedefdef-gputextureusageflags).
#[repr(transparent)]
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct TextureUsages: u32 {
/// Allows a texture to be the source in a [`CommandEncoder::copy_texture_to_buffer`] or
/// [`CommandEncoder::copy_texture_to_texture`] operation.
const COPY_SRC = 1 << 0;
/// Allows a texture to be the destination in a [`CommandEncoder::copy_buffer_to_texture`],
/// [`CommandEncoder::copy_texture_to_texture`], or [`Queue::write_texture`] operation.
const COPY_DST = 1 << 1;
/// Allows a texture to be a [`BindingType::Texture`] in a bind group.
const TEXTURE_BINDING = 1 << 2;
/// Allows a texture to be a [`BindingType::StorageTexture`] in a bind group.
const STORAGE_BINDING = 1 << 3;
/// Allows a texture to be an output attachment of a render pass.
const RENDER_ATTACHMENT = 1 << 4;
}
}
impl_bitflags!(TextureUsages);
/// Defines the capabilities of a given surface and adapter.
#[derive(Debug)]
pub struct SurfaceCapabilities {
/// List of supported formats to use with the given adapter. The first format in the vector is preferred.
///
/// Returns an empty vector if the surface is incompatible with the adapter.
pub formats: Vec<TextureFormat>,
/// List of supported presentation modes to use with the given adapter.
///
/// Returns an empty vector if the surface is incompatible with the adapter.
pub present_modes: Vec<PresentMode>,
/// List of supported alpha modes to use with the given adapter.
///
/// Will return at least one element, CompositeAlphaMode::Opaque or CompositeAlphaMode::Inherit.
pub alpha_modes: Vec<CompositeAlphaMode>,
}
impl Default for SurfaceCapabilities {
fn default() -> Self {
Self {
formats: Vec::new(),
present_modes: Vec::new(),
alpha_modes: vec![CompositeAlphaMode::Opaque],
}
}
}
/// Configures a [`Surface`] for presentation.
///
/// [`Surface`]: ../wgpu/struct.Surface.html
#[repr(C)]
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct SurfaceConfiguration<V> {
/// The usage of the swap chain. The only supported usage is `RENDER_ATTACHMENT`.
pub usage: TextureUsages,
/// The texture format of the swap chain. The only formats that are guaranteed are
/// `Bgra8Unorm` and `Bgra8UnormSrgb`
pub format: TextureFormat,
/// Width of the swap chain. Must be the same size as the surface.
pub width: u32,
/// Height of the swap chain. Must be the same size as the surface.
pub height: u32,
/// Presentation mode of the swap chain. Fifo is the only mode guaranteed to be supported.
/// FifoRelaxed, Immediate, and Mailbox will crash if unsupported, while AutoVsync and
/// AutoNoVsync will gracefully do a designed sets of fallbacks if their primary modes are
/// unsupported.
pub present_mode: PresentMode,
/// Specifies how the alpha channel of the textures should be handled during compositing.
pub alpha_mode: CompositeAlphaMode,
/// Specifies what view formats will be allowed when calling create_view() on texture returned by get_current_texture().
///
/// View formats of the same format as the texture are always allowed.
///
/// Note: currently, only the srgb-ness is allowed to change. (ex: Rgba8Unorm texture + Rgba8UnormSrgb view)
pub view_formats: V,
}
impl<V: Clone> SurfaceConfiguration<V> {
/// Map view_formats of the texture descriptor into another.
pub fn map_view_formats<M>(&self, fun: impl FnOnce(V) -> M) -> SurfaceConfiguration<M> {
SurfaceConfiguration {
usage: self.usage,
format: self.format,
width: self.width,
height: self.height,
present_mode: self.present_mode,
alpha_mode: self.alpha_mode,
view_formats: fun(self.view_formats.clone()),
}
}
}
/// Status of the recieved surface image.
#[repr(C)]
#[derive(Debug)]
pub enum SurfaceStatus {
/// No issues.
Good,
/// The swap chain is operational, but it does no longer perfectly
/// match the surface. A re-configuration is needed.
Suboptimal,
/// Unable to get the next frame, timed out.
Timeout,
/// The surface under the swap chain has changed.
Outdated,
/// The surface under the swap chain is lost.
Lost,
}
/// Nanosecond timestamp used by the presentation engine.
///
/// The specific clock depends on the window system integration (WSI) API used.
///
/// <table>
/// <tr>
/// <td>WSI</td>
/// <td>Clock</td>
/// </tr>
/// <tr>
/// <td>IDXGISwapchain</td>
/// <td><a href="https://docs.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancecounter">QueryPerformanceCounter</a></td>
/// </tr>
/// <tr>
/// <td>IPresentationManager</td>
/// <td><a href="https://docs.microsoft.com/en-us/windows/win32/api/realtimeapiset/nf-realtimeapiset-queryinterrupttimeprecise">QueryInterruptTimePrecise</a></td>
/// </tr>
/// <tr>
/// <td>CAMetalLayer</td>
/// <td><a href="https://developer.apple.com/documentation/kernel/1462446-mach_absolute_time">mach_absolute_time</a></td>
/// </tr>
/// <tr>
/// <td>VK_GOOGLE_display_timing</td>
/// <td><a href="https://linux.die.net/man/3/clock_gettime">clock_gettime(CLOCK_MONOTONIC)</a></td>
/// </tr>
/// </table>
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct PresentationTimestamp(
/// Timestamp in nanoseconds.
pub u128,
);
impl PresentationTimestamp {
/// A timestamp that is invalid due to the platform not having a timestamp system.
pub const INVALID_TIMESTAMP: Self = Self(u128::MAX);
/// Returns true if this timestamp is the invalid timestamp.
pub fn is_invalid(self) -> bool {
self == Self::INVALID_TIMESTAMP
}
}
/// RGBA double precision color.
///
/// This is not to be used as a generic color type, only for specific wgpu interfaces.
#[repr(C)]
#[derive(Clone, Copy, Debug, Default, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "camelCase"))]
pub struct Color {
/// Red component of the color
pub r: f64,
/// Green component of the color
pub g: f64,
/// Blue component of the color
pub b: f64,
/// Alpha component of the color
pub a: f64,
}
#[allow(missing_docs)]
impl Color {
pub const TRANSPARENT: Self = Self {
r: 0.0,
g: 0.0,
b: 0.0,
a: 0.0,
};
pub const BLACK: Self = Self {
r: 0.0,
g: 0.0,
b: 0.0,
a: 1.0,
};
pub const WHITE: Self = Self {
r: 1.0,
g: 1.0,
b: 1.0,
a: 1.0,
};
pub const RED: Self = Self {
r: 1.0,
g: 0.0,
b: 0.0,
a: 1.0,
};
pub const GREEN: Self = Self {
r: 0.0,
g: 1.0,
b: 0.0,
a: 1.0,
};
pub const BLUE: Self = Self {
r: 0.0,
g: 0.0,
b: 1.0,
a: 1.0,
};
}
/// Dimensionality of a texture.
///
/// Corresponds to [WebGPU `GPUTextureDimension`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gputexturedimension).
#[repr(C)]
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum TextureDimension {
/// 1D texture
#[cfg_attr(feature = "serde", serde(rename = "1d"))]
D1,
/// 2D texture
#[cfg_attr(feature = "serde", serde(rename = "2d"))]
D2,
/// 3D texture
#[cfg_attr(feature = "serde", serde(rename = "3d"))]
D3,
}
/// Origin of a copy from a 2D image.
///
/// Corresponds to [WebGPU `GPUOrigin2D`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpuorigin2ddict).
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "camelCase"))]
pub struct Origin2d {
///
pub x: u32,
///
pub y: u32,
}
impl Origin2d {
/// Zero origin.
pub const ZERO: Self = Self { x: 0, y: 0 };
/// Adds the third dimension to this origin
pub fn to_3d(self, z: u32) -> Origin3d {
Origin3d {
x: self.x,
y: self.y,
z,
}
}
}
/// Origin of a copy to/from a texture.
///
/// Corresponds to [WebGPU `GPUOrigin3D`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpuorigin3ddict).
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "camelCase"))]
pub struct Origin3d {
/// X position of the origin
pub x: u32,
/// Y position of the origin
pub y: u32,
/// Z position of the origin
pub z: u32,
}
impl Origin3d {
/// Zero origin.
pub const ZERO: Self = Self { x: 0, y: 0, z: 0 };
/// Removes the third dimension from this origin
pub fn to_2d(self) -> Origin2d {
Origin2d {
x: self.x,
y: self.y,
}
}
}
impl Default for Origin3d {
fn default() -> Self {
Self::ZERO
}
}
/// Extent of a texture related operation.
///
/// Corresponds to [WebGPU `GPUExtent3D`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpuextent3ddict).
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "camelCase"))]
pub struct Extent3d {
/// Width of the extent
pub width: u32,
/// Height of the extent
pub height: u32,
/// The depth of the extent or the number of array layers
#[cfg_attr(feature = "serde", serde(default = "default_depth"))]
pub depth_or_array_layers: u32,
}
#[cfg(feature = "serde")]
fn default_depth() -> u32 {
1
}
impl Default for Extent3d {
fn default() -> Self {
Self {
width: 1,
height: 1,
depth_or_array_layers: 1,
}
}
}
impl Extent3d {
/// Calculates the [physical size] backing a texture of the given
/// format and extent. This includes padding to the block width
/// and height of the format.
///
/// This is the texture extent that you must upload at when uploading to _mipmaps_ of compressed textures.
///
/// [physical size]: https://gpuweb.github.io/gpuweb/#physical-miplevel-specific-texture-extent
pub fn physical_size(&self, format: TextureFormat) -> Self {
let (block_width, block_height) = format.block_dimensions();
let width = ((self.width + block_width - 1) / block_width) * block_width;
let height = ((self.height + block_height - 1) / block_height) * block_height;
Self {
width,
height,
depth_or_array_layers: self.depth_or_array_layers,
}
}
/// Calculates the maximum possible count of mipmaps.
///
/// Treats the depth as part of the mipmaps. If calculating
/// for a 2DArray texture, which does not mipmap depth, set depth to 1.
pub fn max_mips(&self, dim: TextureDimension) -> u32 {
match dim {
TextureDimension::D1 => 1,
TextureDimension::D2 => {
let max_dim = self.width.max(self.height);
32 - max_dim.leading_zeros()
}
TextureDimension::D3 => {
let max_dim = self.width.max(self.height.max(self.depth_or_array_layers));
32 - max_dim.leading_zeros()
}
}
}
/// Calculates the extent at a given mip level.
/// Does *not* account for memory size being a multiple of block size.
///
/// <https://gpuweb.github.io/gpuweb/#logical-miplevel-specific-texture-extent>
pub fn mip_level_size(&self, level: u32, dim: TextureDimension) -> Self {
Self {
width: u32::max(1, self.width >> level),
height: match dim {
TextureDimension::D1 => 1,
_ => u32::max(1, self.height >> level),
},
depth_or_array_layers: match dim {
TextureDimension::D1 => 1,
TextureDimension::D2 => self.depth_or_array_layers,
TextureDimension::D3 => u32::max(1, self.depth_or_array_layers >> level),
},
}
}
}
#[test]
fn test_physical_size() {
let format = TextureFormat::Bc1RgbaUnormSrgb; // 4x4 blocks
assert_eq!(
Extent3d {
width: 7,
height: 7,
depth_or_array_layers: 1
}
.physical_size(format),
Extent3d {
width: 8,
height: 8,
depth_or_array_layers: 1
}
);
// Doesn't change, already aligned
assert_eq!(
Extent3d {
width: 8,
height: 8,
depth_or_array_layers: 1
}
.physical_size(format),
Extent3d {
width: 8,
height: 8,
depth_or_array_layers: 1
}
);
let format = TextureFormat::Astc {
block: AstcBlock::B8x5,
channel: AstcChannel::Unorm,
}; // 8x5 blocks
assert_eq!(
Extent3d {
width: 7,
height: 7,
depth_or_array_layers: 1
}
.physical_size(format),
Extent3d {
width: 8,
height: 10,
depth_or_array_layers: 1
}
);
}
#[test]
fn test_max_mips() {
// 1D
assert_eq!(
Extent3d {
width: 240,
height: 1,
depth_or_array_layers: 1
}
.max_mips(TextureDimension::D1),
1
);
// 2D
assert_eq!(
Extent3d {
width: 1,
height: 1,
depth_or_array_layers: 1
}
.max_mips(TextureDimension::D2),
1
);
assert_eq!(
Extent3d {
width: 60,
height: 60,
depth_or_array_layers: 1
}
.max_mips(TextureDimension::D2),
6
);
assert_eq!(
Extent3d {
width: 240,
height: 1,
depth_or_array_layers: 1000
}
.max_mips(TextureDimension::D2),
8
);
// 3D
assert_eq!(
Extent3d {
width: 16,
height: 30,
depth_or_array_layers: 60
}
.max_mips(TextureDimension::D3),
6
);
}
/// Describes a [`Texture`](../wgpu/struct.Texture.html).
///
/// Corresponds to [WebGPU `GPUTextureDescriptor`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gputexturedescriptor).
#[repr(C)]
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct TextureDescriptor<L, V> {
/// Debug label of the texture. This will show up in graphics debuggers for easy identification.
pub label: L,
/// Size of the texture. All components must be greater than zero. For a
/// regular 1D/2D texture, the unused sizes will be 1. For 2DArray textures,
/// Z is the number of 2D textures in that array.
pub size: Extent3d,
/// Mip count of texture. For a texture with no extra mips, this must be 1.
pub mip_level_count: u32,
/// Sample count of texture. If this is not 1, texture must have [`BindingType::Texture::multisampled`] set to true.
pub sample_count: u32,
/// Dimensions of the texture.
pub dimension: TextureDimension,
/// Format of the texture.
pub format: TextureFormat,
/// Allowed usages of the texture. If used in other ways, the operation will panic.
pub usage: TextureUsages,
/// Specifies what view formats will be allowed when calling create_view() on this texture.
///
/// View formats of the same format as the texture are always allowed.
///
/// Note: currently, only the srgb-ness is allowed to change. (ex: Rgba8Unorm texture + Rgba8UnormSrgb view)
pub view_formats: V,
}
impl<L, V> TextureDescriptor<L, V> {
/// Takes a closure and maps the label of the texture descriptor into another.
pub fn map_label<K>(&self, fun: impl FnOnce(&L) -> K) -> TextureDescriptor<K, V>
where
V: Clone,
{
TextureDescriptor {
label: fun(&self.label),
size: self.size,
mip_level_count: self.mip_level_count,
sample_count: self.sample_count,
dimension: self.dimension,
format: self.format,
usage: self.usage,
view_formats: self.view_formats.clone(),
}
}
/// Maps the label and view_formats of the texture descriptor into another.
pub fn map_label_and_view_formats<K, M>(
&self,
l_fun: impl FnOnce(&L) -> K,
v_fun: impl FnOnce(V) -> M,
) -> TextureDescriptor<K, M>
where
V: Clone,
{
TextureDescriptor {
label: l_fun(&self.label),
size: self.size,
mip_level_count: self.mip_level_count,
sample_count: self.sample_count,
dimension: self.dimension,
format: self.format,
usage: self.usage,
view_formats: v_fun(self.view_formats.clone()),
}
}
/// Calculates the extent at a given mip level.
///
/// If the given mip level is larger than possible, returns None.
///
/// Treats the depth as part of the mipmaps. If calculating
/// for a 2DArray texture, which does not mipmap depth, set depth to 1.
///
/// ```rust
/// # use wgpu_types as wgpu;
/// # type TextureDescriptor<'a> = wgpu::TextureDescriptor<(), &'a [wgpu::TextureFormat]>;
/// let desc = TextureDescriptor {
/// label: (),
/// size: wgpu::Extent3d { width: 100, height: 60, depth_or_array_layers: 1 },
/// mip_level_count: 7,
/// sample_count: 1,
/// dimension: wgpu::TextureDimension::D3,
/// format: wgpu::TextureFormat::Rgba8Sint,
/// usage: wgpu::TextureUsages::empty(),
/// view_formats: &[],
/// };
///
/// assert_eq!(desc.mip_level_size(0), Some(wgpu::Extent3d { width: 100, height: 60, depth_or_array_layers: 1 }));
/// assert_eq!(desc.mip_level_size(1), Some(wgpu::Extent3d { width: 50, height: 30, depth_or_array_layers: 1 }));
/// assert_eq!(desc.mip_level_size(2), Some(wgpu::Extent3d { width: 25, height: 15, depth_or_array_layers: 1 }));
/// assert_eq!(desc.mip_level_size(3), Some(wgpu::Extent3d { width: 12, height: 7, depth_or_array_layers: 1 }));
/// assert_eq!(desc.mip_level_size(4), Some(wgpu::Extent3d { width: 6, height: 3, depth_or_array_layers: 1 }));
/// assert_eq!(desc.mip_level_size(5), Some(wgpu::Extent3d { width: 3, height: 1, depth_or_array_layers: 1 }));
/// assert_eq!(desc.mip_level_size(6), Some(wgpu::Extent3d { width: 1, height: 1, depth_or_array_layers: 1 }));
/// assert_eq!(desc.mip_level_size(7), None);
/// ```
pub fn mip_level_size(&self, level: u32) -> Option<Extent3d> {
if level >= self.mip_level_count {
return None;
}
Some(self.size.mip_level_size(level, self.dimension))
}
/// Computes the render extent of this texture.
///
/// <https://gpuweb.github.io/gpuweb/#abstract-opdef-compute-render-extent>
pub fn compute_render_extent(&self, mip_level: u32) -> Extent3d {
Extent3d {
width: u32::max(1, self.size.width >> mip_level),
height: u32::max(1, self.size.height >> mip_level),
depth_or_array_layers: 1,
}
}
/// Returns the number of array layers.
///
/// <https://gpuweb.github.io/gpuweb/#abstract-opdef-array-layer-count>
pub fn array_layer_count(&self) -> u32 {
match self.dimension {
TextureDimension::D1 | TextureDimension::D3 => 1,
TextureDimension::D2 => self.size.depth_or_array_layers,
}
}
}
/// Kind of data the texture holds.
///
/// Corresponds to [WebGPU `GPUTextureAspect`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gputextureaspect).
#[repr(C)]
#[derive(Copy, Clone, Debug, Default, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "kebab-case"))]
pub enum TextureAspect {
/// Depth, Stencil, and Color.
#[default]
All,
/// Stencil.
StencilOnly,
/// Depth.
DepthOnly,
}
/// How edges should be handled in texture addressing.
///
/// Corresponds to [WebGPU `GPUAddressMode`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gpuaddressmode).
#[repr(C)]
#[derive(Copy, Clone, Debug, Default, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "kebab-case"))]
pub enum AddressMode {
/// Clamp the value to the edge of the texture
///
/// -0.25 -> 0.0
/// 1.25 -> 1.0
#[default]
ClampToEdge = 0,
/// Repeat the texture in a tiling fashion
///
/// -0.25 -> 0.75
/// 1.25 -> 0.25
Repeat = 1,
/// Repeat the texture, mirroring it every repeat
///
/// -0.25 -> 0.25
/// 1.25 -> 0.75
MirrorRepeat = 2,
/// Clamp the value to the border of the texture
/// Requires feature [`Features::ADDRESS_MODE_CLAMP_TO_BORDER`]
///
/// -0.25 -> border
/// 1.25 -> border
ClampToBorder = 3,
}
/// Texel mixing mode when sampling between texels.
///
/// Corresponds to [WebGPU `GPUFilterMode`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gpufiltermode).
#[repr(C)]
#[derive(Copy, Clone, Debug, Default, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "kebab-case"))]
pub enum FilterMode {
/// Nearest neighbor sampling.
///
/// This creates a pixelated effect when used as a mag filter
#[default]
Nearest = 0,
/// Linear Interpolation
///
/// This makes textures smooth but blurry when used as a mag filter.
Linear = 1,
}
/// A range of push constant memory to pass to a shader stage.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct PushConstantRange {
/// Stage push constant range is visible from. Each stage can only be served by at most one range.
/// One range can serve multiple stages however.
pub stages: ShaderStages,
/// Range in push constant memory to use for the stage. Must be less than [`Limits::max_push_constant_size`].
/// Start and end must be aligned to the 4s.
pub range: Range<u32>,
}
/// Describes a [`CommandBuffer`](../wgpu/struct.CommandBuffer.html).
///
/// Corresponds to [WebGPU `GPUCommandBufferDescriptor`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpucommandbufferdescriptor).
#[repr(C)]
#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct CommandBufferDescriptor<L> {
/// Debug label of this command buffer.
pub label: L,
}
impl<L> CommandBufferDescriptor<L> {
/// Takes a closure and maps the label of the command buffer descriptor into another.
pub fn map_label<K>(&self, fun: impl FnOnce(&L) -> K) -> CommandBufferDescriptor<K> {
CommandBufferDescriptor {
label: fun(&self.label),
}
}
}
/// Describes the depth/stencil attachment for render bundles.
///
/// Corresponds to a portion of [WebGPU `GPURenderBundleEncoderDescriptor`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpurenderbundleencoderdescriptor).
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(serde::Serialize))]
#[cfg_attr(feature = "replay", derive(serde::Deserialize))]
pub struct RenderBundleDepthStencil {
/// Format of the attachment.
pub format: TextureFormat,
/// If the depth aspect of the depth stencil attachment is going to be written to.
///
/// This must match the [`RenderPassDepthStencilAttachment::depth_ops`] of the renderpass this render bundle is executed in.
/// If depth_ops is `Some(..)` this must be false. If it is `None` this must be true.
pub depth_read_only: bool,
/// If the stencil aspect of the depth stencil attachment is going to be written to.
///
/// This must match the [`RenderPassDepthStencilAttachment::stencil_ops`] of the renderpass this render bundle is executed in.
/// If depth_ops is `Some(..)` this must be false. If it is `None` this must be true.
pub stencil_read_only: bool,
}
/// Describes a [`RenderBundle`](../wgpu/struct.RenderBundle.html).
///
/// Corresponds to [WebGPU `GPURenderBundleDescriptor`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpurenderbundledescriptor).
#[repr(C)]
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct RenderBundleDescriptor<L> {
/// Debug label of the render bundle encoder. This will show up in graphics debuggers for easy identification.
pub label: L,
}
impl<L> RenderBundleDescriptor<L> {
/// Takes a closure and maps the label of the render bundle descriptor into another.
pub fn map_label<K>(&self, fun: impl FnOnce(&L) -> K) -> RenderBundleDescriptor<K> {
RenderBundleDescriptor {
label: fun(&self.label),
}
}
}
impl<T> Default for RenderBundleDescriptor<Option<T>> {
fn default() -> Self {
Self { label: None }
}
}
/// Layout of a texture in a buffer's memory.
///
/// The bytes per row and rows per image can be hard to figure out so here are some examples:
///
/// | Resolution | Format | Bytes per block | Pixels per block | Bytes per row | Rows per image |
/// |------------|--------|-----------------|------------------|----------------------------------------|------------------------------|
/// | 256x256 | RGBA8 | 4 | 1 * 1 * 1 | 256 * 4 = Some(1024) | None |
/// | 32x16x8 | RGBA8 | 4 | 1 * 1 * 1 | 32 * 4 = 128 padded to 256 = Some(256) | None |
/// | 256x256 | BC3 | 16 | 4 * 4 * 1 | 16 * (256 / 4) = 1024 = Some(1024) | None |
/// | 64x64x8 | BC3 | 16 | 4 * 4 * 1 | 16 * (64 / 4) = 256 = Some(256) | 64 / 4 = 16 = Some(16) |
///
/// Corresponds to [WebGPU `GPUImageDataLayout`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpuimagedatalayout).
#[repr(C)]
#[derive(Clone, Copy, Debug, Default)]
#[cfg_attr(feature = "trace", derive(serde::Serialize))]
#[cfg_attr(feature = "replay", derive(serde::Deserialize))]
pub struct ImageDataLayout {
/// Offset into the buffer that is the start of the texture. Must be a multiple of texture block size.
/// For non-compressed textures, this is 1.
pub offset: BufferAddress,
/// Bytes per "row" in an image.
///
/// A row is one row of pixels or of compressed blocks in the x direction.
///
/// This value is required if there are multiple rows (i.e. height or depth is more than one pixel or pixel block for compressed textures)
///
/// Must be a multiple of 256 for [`CommandEncoder::copy_buffer_to_texture`][CEcbtt]
/// and [`CommandEncoder::copy_texture_to_buffer`][CEcttb]. You must manually pad the
/// image such that this is a multiple of 256. It will not affect the image data.
///
/// [`Queue::write_texture`][Qwt] does not have this requirement.
///
/// Must be a multiple of the texture block size. For non-compressed textures, this is 1.
///
/// [CEcbtt]: ../wgpu/struct.CommandEncoder.html#method.copy_buffer_to_texture
/// [CEcttb]: ../wgpu/struct.CommandEncoder.html#method.copy_texture_to_buffer
/// [Qwt]: ../wgpu/struct.Queue.html#method.write_texture
pub bytes_per_row: Option<u32>,
/// "Rows" that make up a single "image".
///
/// A row is one row of pixels or of compressed blocks in the x direction.
///
/// An image is one layer in the z direction of a 3D image or 2DArray texture.
///
/// The amount of rows per image may be larger than the actual amount of rows of data.
///
/// Required if there are multiple images (i.e. the depth is more than one).
pub rows_per_image: Option<u32>,
}
/// Specific type of a buffer binding.
///
/// Corresponds to [WebGPU `GPUBufferBindingType`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gpubufferbindingtype).
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum BufferBindingType {
/// A buffer for uniform values.
///
/// Example WGSL syntax:
/// ```rust,ignore
/// struct Globals {
/// a_uniform: vec2<f32>,
/// another_uniform: vec2<f32>,
/// }
/// @group(0) @binding(0)
/// var<uniform> globals: Globals;
/// ```
///
/// Example GLSL syntax:
/// ```cpp,ignore
/// layout(std140, binding = 0)
/// uniform Globals {
/// vec2 aUniform;
/// vec2 anotherUniform;
/// };
/// ```
#[default]
Uniform,
/// A storage buffer.
///
/// Example WGSL syntax:
/// ```rust,ignore
/// @group(0) @binding(0)
/// var<storage, read_write> my_element: array<vec4<f32>>;
/// ```
///
/// Example GLSL syntax:
/// ```cpp,ignore
/// layout (set=0, binding=0) buffer myStorageBuffer {
/// vec4 myElement[];
/// };
/// ```
Storage {
/// If `true`, the buffer can only be read in the shader,
/// and it:
/// - may or may not be annotated with `read` (WGSL).
/// - must be annotated with `readonly` (GLSL).
///
/// Example WGSL syntax:
/// ```rust,ignore
/// @group(0) @binding(0)
/// var<storage, read> my_element: array<vec4<f32>>;
/// ```
///
/// Example GLSL syntax:
/// ```cpp,ignore
/// layout (set=0, binding=0) readonly buffer myStorageBuffer {
/// vec4 myElement[];
/// };
/// ```
read_only: bool,
},
}
/// Specific type of a sample in a texture binding.
///
/// Corresponds to [WebGPU `GPUTextureSampleType`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gputexturesampletype).
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum TextureSampleType {
/// Sampling returns floats.
///
/// Example WGSL syntax:
/// ```rust,ignore
/// @group(0) @binding(0)
/// var t: texture_2d<f32>;
/// ```
///
/// Example GLSL syntax:
/// ```cpp,ignore
/// layout(binding = 0)
/// uniform texture2D t;
/// ```
Float {
/// If this is `false`, the texture can't be sampled with
/// a filtering sampler.
///
/// Even if this is `true`, it's possible to sample with
/// a **non-filtering** sampler.
filterable: bool,
},
/// Sampling does the depth reference comparison.
///
/// This is also compatible with a non-filtering sampler.
///
/// Example WGSL syntax:
/// ```rust,ignore
/// @group(0) @binding(0)
/// var t: texture_depth_2d;
/// ```
///
/// Example GLSL syntax:
/// ```cpp,ignore
/// layout(binding = 0)
/// uniform texture2DShadow t;
/// ```
Depth,
/// Sampling returns signed integers.
///
/// Example WGSL syntax:
/// ```rust,ignore
/// @group(0) @binding(0)
/// var t: texture_2d<i32>;
/// ```
///
/// Example GLSL syntax:
/// ```cpp,ignore
/// layout(binding = 0)
/// uniform itexture2D t;
/// ```
Sint,
/// Sampling returns unsigned integers.
///
/// Example WGSL syntax:
/// ```rust,ignore
/// @group(0) @binding(0)
/// var t: texture_2d<u32>;
/// ```
///
/// Example GLSL syntax:
/// ```cpp,ignore
/// layout(binding = 0)
/// uniform utexture2D t;
/// ```
Uint,
}
impl Default for TextureSampleType {
fn default() -> Self {
Self::Float { filterable: true }
}
}
/// Specific type of a sample in a texture binding.
///
/// For use in [`BindingType::StorageTexture`].
///
/// Corresponds to [WebGPU `GPUStorageTextureAccess`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gpustoragetextureaccess).
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "kebab-case"))]
pub enum StorageTextureAccess {
/// The texture can only be written in the shader and it:
/// - may or may not be annotated with `write` (WGSL).
/// - must be annotated with `writeonly` (GLSL).
///
/// Example WGSL syntax:
/// ```rust,ignore
/// @group(0) @binding(0)
/// var my_storage_image: texture_storage_2d<f32, write>;
/// ```
///
/// Example GLSL syntax:
/// ```cpp,ignore
/// layout(set=0, binding=0, r32f) writeonly uniform image2D myStorageImage;
/// ```
WriteOnly,
/// The texture can only be read in the shader and it must be annotated with `read` (WGSL) or
/// `readonly` (GLSL).
///
/// [`Features::TEXTURE_ADAPTER_SPECIFIC_FORMAT_FEATURES`] must be enabled to use this access
/// mode. This is a native-only extension.
///
/// Example WGSL syntax:
/// ```rust,ignore
/// @group(0) @binding(0)
/// var my_storage_image: texture_storage_2d<f32, read>;
/// ```
///
/// Example GLSL syntax:
/// ```cpp,ignore
/// layout(set=0, binding=0, r32f) readonly uniform image2D myStorageImage;
/// ```
ReadOnly,
/// The texture can be both read and written in the shader and must be annotated with
/// `read_write` in WGSL.
///
/// [`Features::TEXTURE_ADAPTER_SPECIFIC_FORMAT_FEATURES`] must be enabled to use this access
/// mode. This is a nonstandard, native-only extension.
///
/// Example WGSL syntax:
/// ```rust,ignore
/// @group(0) @binding(0)
/// var my_storage_image: texture_storage_2d<f32, read_write>;
/// ```
///
/// Example GLSL syntax:
/// ```cpp,ignore
/// layout(set=0, binding=0, r32f) uniform image2D myStorageImage;
/// ```
ReadWrite,
}
/// Specific type of a sampler binding.
///
/// For use in [`BindingType::Sampler`].
///
/// Corresponds to [WebGPU `GPUSamplerBindingType`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gpusamplerbindingtype).
#[repr(C)]
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "kebab-case"))]
pub enum SamplerBindingType {
/// The sampling result is produced based on more than a single color sample from a texture,
/// e.g. when bilinear interpolation is enabled.
Filtering,
/// The sampling result is produced based on a single color sample from a texture.
NonFiltering,
/// Use as a comparison sampler instead of a normal sampler.
/// For more info take a look at the analogous functionality in OpenGL: <https://www.khronos.org/opengl/wiki/Sampler_Object#Comparison_mode>.
Comparison,
}
/// Specific type of a binding.
///
/// For use in [`BindGroupLayoutEntry`].
///
/// Corresponds to WebGPU's mutually exclusive fields within [`GPUBindGroupLayoutEntry`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpubindgrouplayoutentry).
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum BindingType {
/// A buffer binding.
///
/// Corresponds to [WebGPU `GPUBufferBindingLayout`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpubufferbindinglayout).
Buffer {
/// Sub-type of the buffer binding.
ty: BufferBindingType,
/// Indicates that the binding has a dynamic offset.
///
/// One offset must be passed to [`RenderPass::set_bind_group`][RPsbg] for each dynamic
/// binding in increasing order of binding number.
///
/// [RPsbg]: ../wgpu/struct.RenderPass.html#method.set_bind_group
#[cfg_attr(any(feature = "trace", feature = "replay"), serde(default))]
has_dynamic_offset: bool,
/// Minimum size of the corresponding `BufferBinding` required to match this entry.
/// When pipeline is created, the size has to cover at least the corresponding structure in the shader
/// plus one element of the unbound array, which can only be last in the structure.
/// If `None`, the check is performed at draw call time instead of pipeline and bind group creation.
#[cfg_attr(any(feature = "trace", feature = "replay"), serde(default))]
min_binding_size: Option<BufferSize>,
},
/// A sampler that can be used to sample a texture.
///
/// Example WGSL syntax:
/// ```rust,ignore
/// @group(0) @binding(0)
/// var s: sampler;
/// ```
///
/// Example GLSL syntax:
/// ```cpp,ignore
/// layout(binding = 0)
/// uniform sampler s;
/// ```
///
/// Corresponds to [WebGPU `GPUSamplerBindingLayout`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpusamplerbindinglayout).
Sampler(SamplerBindingType),
/// A texture binding.
///
/// Example WGSL syntax:
/// ```rust,ignore
/// @group(0) @binding(0)
/// var t: texture_2d<f32>;
/// ```
///
/// Example GLSL syntax:
/// ```cpp,ignore
/// layout(binding = 0)
/// uniform texture2D t;
/// ```
///
/// Corresponds to [WebGPU `GPUTextureBindingLayout`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gputexturebindinglayout).
Texture {
/// Sample type of the texture binding.
sample_type: TextureSampleType,
/// Dimension of the texture view that is going to be sampled.
view_dimension: TextureViewDimension,
/// True if the texture has a sample count greater than 1. If this is true,
/// the texture must be read from shaders with `texture1DMS`, `texture2DMS`, or `texture3DMS`,
/// depending on `dimension`.
multisampled: bool,
},
/// A storage texture.
///
/// Example WGSL syntax:
/// ```rust,ignore
/// @group(0) @binding(0)
/// var my_storage_image: texture_storage_2d<f32, write>;
/// ```
///
/// Example GLSL syntax:
/// ```cpp,ignore
/// layout(set=0, binding=0, r32f) writeonly uniform image2D myStorageImage;
/// ```
/// Note that the texture format must be specified in the shader as well.
/// A list of valid formats can be found in the specification here: <https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.html#layout-qualifiers>
///
/// Corresponds to [WebGPU `GPUStorageTextureBindingLayout`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpustoragetexturebindinglayout).
StorageTexture {
/// Allowed access to this texture.
access: StorageTextureAccess,
/// Format of the texture.
format: TextureFormat,
/// Dimension of the texture view that is going to be sampled.
view_dimension: TextureViewDimension,
},
}
impl BindingType {
/// Returns true for buffer bindings with dynamic offset enabled.
pub fn has_dynamic_offset(&self) -> bool {
match *self {
Self::Buffer {
has_dynamic_offset, ..
} => has_dynamic_offset,
_ => false,
}
}
}
/// Describes a single binding inside a bind group.
///
/// Corresponds to [WebGPU `GPUBindGroupLayoutEntry`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpubindgrouplayoutentry).
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "trace", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct BindGroupLayoutEntry {
/// Binding index. Must match shader index and be unique inside a BindGroupLayout. A binding
/// of index 1, would be described as `layout(set = 0, binding = 1) uniform` in shaders.
pub binding: u32,
/// Which shader stages can see this binding.
pub visibility: ShaderStages,
/// The type of the binding
pub ty: BindingType,
/// If this value is Some, indicates this entry is an array. Array size must be 1 or greater.
///
/// If this value is Some and `ty` is `BindingType::Texture`, [`Features::TEXTURE_BINDING_ARRAY`] must be supported.
///
/// If this value is Some and `ty` is any other variant, bind group creation will fail.
#[cfg_attr(any(feature = "trace", feature = "replay"), serde(default))]
pub count: Option<NonZeroU32>,
}
/// View of a buffer which can be used to copy to/from a texture.
///
/// Corresponds to [WebGPU `GPUImageCopyBuffer`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpuimagecopybuffer).
#[repr(C)]
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "trace", derive(serde::Serialize))]
#[cfg_attr(feature = "replay", derive(serde::Deserialize))]
pub struct ImageCopyBuffer<B> {
/// The buffer to be copied to/from.
pub buffer: B,
/// The layout of the texture data in this buffer.
pub layout: ImageDataLayout,
}
/// View of a texture which can be used to copy to/from a buffer/texture.
///
/// Corresponds to [WebGPU `GPUImageCopyTexture`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpuimagecopytexture).
#[repr(C)]
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "trace", derive(serde::Serialize))]
#[cfg_attr(feature = "replay", derive(serde::Deserialize))]
pub struct ImageCopyTexture<T> {
/// The texture to be copied to/from.
pub texture: T,
/// The target mip level of the texture.
pub mip_level: u32,
/// The base texel of the texture in the selected `mip_level`. Together
/// with the `copy_size` argument to copy functions, defines the
/// sub-region of the texture to copy.
#[cfg_attr(any(feature = "trace", feature = "replay"), serde(default))]
pub origin: Origin3d,
/// The copy aspect.
#[cfg_attr(any(feature = "trace", feature = "replay"), serde(default))]
pub aspect: TextureAspect,
}
impl<T> ImageCopyTexture<T> {
/// Adds color space and premultiplied alpha information to make this
/// descriptor tagged.
pub fn to_tagged(
self,
color_space: PredefinedColorSpace,
premultiplied_alpha: bool,
) -> ImageCopyTextureTagged<T> {
ImageCopyTextureTagged {
texture: self.texture,
mip_level: self.mip_level,
origin: self.origin,
aspect: self.aspect,
color_space,
premultiplied_alpha,
}
}
}
/// View of an external texture that cna be used to copy to a texture.
///
/// Corresponds to [WebGPU `GPUImageCopyExternalImage`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpuimagecopyexternalimage).
#[cfg(target_arch = "wasm32")]
#[derive(Clone, Debug)]
pub struct ImageCopyExternalImage {
/// The texture to be copied from. The copy source data is captured at the moment
/// the copy is issued.
pub source: ExternalImageSource,
/// The base texel used for copying from the external image. Together
/// with the `copy_size` argument to copy functions, defines the
/// sub-region of the image to copy.
///
/// Relative to the top left of the image.
///
/// Must be [`Origin2d::ZERO`] if [`DownlevelFlags::UNRESTRICTED_EXTERNAL_TEXTURE_COPIES`] is not supported.
pub origin: Origin2d,
/// If the Y coordinate of the image should be flipped. Even if this is
/// true, `origin` is still relative to the top left.
pub flip_y: bool,
}
/// Source of an external texture copy.
///
/// Corresponds to the [implicit union type on WebGPU `GPUImageCopyExternalImage.source`](
/// https://gpuweb.github.io/gpuweb/#dom-gpuimagecopyexternalimage-source).
#[cfg(target_arch = "wasm32")]
#[derive(Clone, Debug)]
pub enum ExternalImageSource {
/// Copy from a previously-decoded image bitmap.
ImageBitmap(web_sys::ImageBitmap),
/// Copy from a current frame of a video element.
HTMLVideoElement(web_sys::HtmlVideoElement),
/// Copy from a on-screen canvas.
HTMLCanvasElement(web_sys::HtmlCanvasElement),
/// Copy from a off-screen canvas.
///
/// Requies [`DownlevelFlags::EXTERNAL_TEXTURE_OFFSCREEN_CANVAS`]
OffscreenCanvas(web_sys::OffscreenCanvas),
}
#[cfg(target_arch = "wasm32")]
impl ExternalImageSource {
/// Gets the pixel, not css, width of the source.
pub fn width(&self) -> u32 {
match self {
ExternalImageSource::ImageBitmap(b) => b.width(),
ExternalImageSource::HTMLVideoElement(v) => v.video_width(),
ExternalImageSource::HTMLCanvasElement(c) => c.width(),
ExternalImageSource::OffscreenCanvas(c) => c.width(),
}
}
/// Gets the pixel, not css, height of the source.
pub fn height(&self) -> u32 {
match self {
ExternalImageSource::ImageBitmap(b) => b.height(),
ExternalImageSource::HTMLVideoElement(v) => v.video_height(),
ExternalImageSource::HTMLCanvasElement(c) => c.height(),
ExternalImageSource::OffscreenCanvas(c) => c.height(),
}
}
}
#[cfg(target_arch = "wasm32")]
impl std::ops::Deref for ExternalImageSource {
type Target = js_sys::Object;
fn deref(&self) -> &Self::Target {
match self {
Self::ImageBitmap(b) => b,
Self::HTMLVideoElement(v) => v,
Self::HTMLCanvasElement(c) => c,
Self::OffscreenCanvas(c) => c,
}
}
}
#[cfg(target_arch = "wasm32")]
unsafe impl Send for ExternalImageSource {}
#[cfg(target_arch = "wasm32")]
unsafe impl Sync for ExternalImageSource {}
/// Color spaces supported on the web.
///
/// Corresponds to [HTML Canvas `PredefinedColorSpace`](
/// https://html.spec.whatwg.org/multipage/canvas.html#predefinedcolorspace).
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "trace", derive(serde::Serialize))]
#[cfg_attr(feature = "replay", derive(serde::Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "kebab-case"))]
pub enum PredefinedColorSpace {
/// sRGB color space
Srgb,
/// Display-P3 color space
DisplayP3,
}
/// View of a texture which can be used to copy to a texture, including
/// color space and alpha premultiplication information.
///
/// Corresponds to [WebGPU `GPUImageCopyTextureTagged`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpuimagecopytexturetagged).
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "trace", derive(serde::Serialize))]
#[cfg_attr(feature = "replay", derive(serde::Deserialize))]
pub struct ImageCopyTextureTagged<T> {
/// The texture to be copied to/from.
pub texture: T,
/// The target mip level of the texture.
pub mip_level: u32,
/// The base texel of the texture in the selected `mip_level`.
pub origin: Origin3d,
/// The copy aspect.
pub aspect: TextureAspect,
/// The color space of this texture.
pub color_space: PredefinedColorSpace,
/// The premultiplication of this texture
pub premultiplied_alpha: bool,
}
impl<T: Copy> ImageCopyTextureTagged<T> {
/// Removes the colorspace information from the type.
pub fn to_untagged(self) -> ImageCopyTexture<T> {
ImageCopyTexture {
texture: self.texture,
mip_level: self.mip_level,
origin: self.origin,
aspect: self.aspect,
}
}
}
/// Subresource range within an image
#[repr(C)]
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq)]
#[cfg_attr(feature = "trace", derive(serde::Serialize))]
#[cfg_attr(feature = "replay", derive(serde::Deserialize))]
pub struct ImageSubresourceRange {
/// Aspect of the texture. Color textures must be [`TextureAspect::All`][TAA].
///
/// [TAA]: ../wgpu/enum.TextureAspect.html#variant.All
pub aspect: TextureAspect,
/// Base mip level.
pub base_mip_level: u32,
/// Mip level count.
/// If `Some(count)`, `base_mip_level + count` must be less or equal to underlying texture mip count.
/// If `None`, considered to include the rest of the mipmap levels, but at least 1 in total.
pub mip_level_count: Option<u32>,
/// Base array layer.
pub base_array_layer: u32,
/// Layer count.
/// If `Some(count)`, `base_array_layer + count` must be less or equal to the underlying array count.
/// If `None`, considered to include the rest of the array layers, but at least 1 in total.
pub array_layer_count: Option<u32>,
}
impl ImageSubresourceRange {
/// Returns if the given range represents a full resource, with a texture of the given
/// layer count and mip count.
///
/// ```rust
/// # use wgpu_types as wgpu;
///
/// let range_none = wgpu::ImageSubresourceRange {
/// aspect: wgpu::TextureAspect::All,
/// base_mip_level: 0,
/// mip_level_count: None,
/// base_array_layer: 0,
/// array_layer_count: None,
/// };
/// assert_eq!(range_none.is_full_resource(wgpu::TextureFormat::Stencil8, 5, 10), true);
///
/// let range_some = wgpu::ImageSubresourceRange {
/// aspect: wgpu::TextureAspect::All,
/// base_mip_level: 0,
/// mip_level_count: Some(5),
/// base_array_layer: 0,
/// array_layer_count: Some(10),
/// };
/// assert_eq!(range_some.is_full_resource(wgpu::TextureFormat::Stencil8, 5, 10), true);
///
/// let range_mixed = wgpu::ImageSubresourceRange {
/// aspect: wgpu::TextureAspect::StencilOnly,
/// base_mip_level: 0,
/// // Only partial resource
/// mip_level_count: Some(3),
/// base_array_layer: 0,
/// array_layer_count: None,
/// };
/// assert_eq!(range_mixed.is_full_resource(wgpu::TextureFormat::Stencil8, 5, 10), false);
/// ```
pub fn is_full_resource(
&self,
format: TextureFormat,
mip_levels: u32,
array_layers: u32,
) -> bool {
// Mip level count and array layer count need to deal with both the None and Some(count) case.
let mip_level_count = self.mip_level_count.unwrap_or(mip_levels);
let array_layer_count = self.array_layer_count.unwrap_or(array_layers);
let aspect_eq = Some(format) == format.aspect_specific_format(self.aspect);
let base_mip_level_eq = self.base_mip_level == 0;
let mip_level_count_eq = mip_level_count == mip_levels;
let base_array_layer_eq = self.base_array_layer == 0;
let array_layer_count_eq = array_layer_count == array_layers;
aspect_eq
&& base_mip_level_eq
&& mip_level_count_eq
&& base_array_layer_eq
&& array_layer_count_eq
}
/// Returns the mip level range of a subresource range describes for a specific texture.
pub fn mip_range(&self, mip_level_count: u32) -> Range<u32> {
self.base_mip_level..match self.mip_level_count {
Some(mip_level_count) => self.base_mip_level + mip_level_count,
None => mip_level_count,
}
}
/// Returns the layer range of a subresource range describes for a specific texture.
pub fn layer_range(&self, array_layer_count: u32) -> Range<u32> {
self.base_array_layer..match self.array_layer_count {
Some(array_layer_count) => self.base_array_layer + array_layer_count,
None => array_layer_count,
}
}
}
/// Color variation to use when sampler addressing mode is [`AddressMode::ClampToBorder`]
#[repr(C)]
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "trace", derive(serde::Serialize))]
#[cfg_attr(feature = "replay", derive(serde::Deserialize))]
pub enum SamplerBorderColor {
/// [0, 0, 0, 0]
TransparentBlack,
/// [0, 0, 0, 1]
OpaqueBlack,
/// [1, 1, 1, 1]
OpaqueWhite,
/// On the Metal backend, this is equivalent to `TransparentBlack` for
/// textures that have an alpha component, and equivalent to `OpaqueBlack`
/// for textures that do not have an alpha component. On other backends,
/// this is equivalent to `TransparentBlack`. Requires
/// [`Features::ADDRESS_MODE_CLAMP_TO_ZERO`]. Not supported on the web.
Zero,
}
/// Describes how to create a QuerySet.
///
/// Corresponds to [WebGPU `GPUQuerySetDescriptor`](
/// https://gpuweb.github.io/gpuweb/#dictdef-gpuquerysetdescriptor).
#[derive(Clone, Debug)]
#[cfg_attr(feature = "trace", derive(serde::Serialize))]
#[cfg_attr(feature = "replay", derive(serde::Deserialize))]
pub struct QuerySetDescriptor<L> {
/// Debug label for the query set.
pub label: L,
/// Kind of query that this query set should contain.
pub ty: QueryType,
/// Total count of queries the set contains. Must not be zero.
/// Must not be greater than [`QUERY_SET_MAX_QUERIES`].
pub count: u32,
}
impl<L> QuerySetDescriptor<L> {
/// Takes a closure and maps the label of the query set descriptor into another.
pub fn map_label<'a, K>(&'a self, fun: impl FnOnce(&'a L) -> K) -> QuerySetDescriptor<K> {
QuerySetDescriptor {
label: fun(&self.label),
ty: self.ty,
count: self.count,
}
}
}
/// Type of query contained in a QuerySet.
///
/// Corresponds to [WebGPU `GPUQueryType`](
/// https://gpuweb.github.io/gpuweb/#enumdef-gpuquerytype).
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "trace", derive(serde::Serialize))]
#[cfg_attr(feature = "replay", derive(serde::Deserialize))]
pub enum QueryType {
/// Query returns a single 64-bit number, serving as an occlusion boolean.
Occlusion,
/// Query returns up to 5 64-bit numbers based on the given flags.
///
/// See [`PipelineStatisticsTypes`]'s documentation for more information
/// on how they get resolved.
///
/// [`Features::PIPELINE_STATISTICS_QUERY`] must be enabled to use this query type.
PipelineStatistics(PipelineStatisticsTypes),
/// Query returns a 64-bit number indicating the GPU-timestamp
/// where all previous commands have finished executing.
///
/// Must be multiplied by [`Queue::get_timestamp_period`][Qgtp] to get
/// the value in nanoseconds. Absolute values have no meaning,
/// but timestamps can be subtracted to get the time it takes
/// for a string of operations to complete.
///
/// [`Features::TIMESTAMP_QUERY`] must be enabled to use this query type.
///
/// [Qgtp]: ../wgpu/struct.Queue.html#method.get_timestamp_period
Timestamp,
}
bitflags::bitflags! {
/// Flags for which pipeline data should be recorded.
///
/// The amount of values written when resolved depends
/// on the amount of flags. If 3 flags are enabled, 3
/// 64-bit values will be written per-query.
///
/// The order they are written is the order they are declared
/// in this bitflags. If you enabled `CLIPPER_PRIMITIVES_OUT`
/// and `COMPUTE_SHADER_INVOCATIONS`, it would write 16 bytes,
/// the first 8 bytes being the primitive out value, the last 8
/// bytes being the compute shader invocation count.
#[repr(transparent)]
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct PipelineStatisticsTypes : u8 {
/// Amount of times the vertex shader is ran. Accounts for
/// the vertex cache when doing indexed rendering.
const VERTEX_SHADER_INVOCATIONS = 1 << 0;
/// Amount of times the clipper is invoked. This
/// is also the amount of triangles output by the vertex shader.
const CLIPPER_INVOCATIONS = 1 << 1;
/// Amount of primitives that are not culled by the clipper.
/// This is the amount of triangles that are actually on screen
/// and will be rasterized and rendered.
const CLIPPER_PRIMITIVES_OUT = 1 << 2;
/// Amount of times the fragment shader is ran. Accounts for
/// fragment shaders running in 2x2 blocks in order to get
/// derivatives.
const FRAGMENT_SHADER_INVOCATIONS = 1 << 3;
/// Amount of times a compute shader is invoked. This will
/// be equivalent to the dispatch count times the workgroup size.
const COMPUTE_SHADER_INVOCATIONS = 1 << 4;
}
}
impl_bitflags!(PipelineStatisticsTypes);
/// Argument buffer layout for draw_indirect commands.
#[repr(C)]
#[derive(Clone, Copy, Debug)]
pub struct DrawIndirectArgs {
/// The number of vertices to draw.
pub vertex_count: u32,
/// The number of instances to draw.
pub instance_count: u32,
/// Offset into the vertex buffers, in vertices, to begin drawing from.
pub first_vertex: u32,
/// First instance to draw.
pub first_instance: u32,
}
/// Argument buffer layout for draw_indexed_indirect commands.
#[repr(C)]
#[derive(Clone, Copy, Debug)]
pub struct DrawIndexedIndirectArgs {
/// The number of indices to draw.
pub index_count: u32,
/// The number of instances to draw.
pub instance_count: u32,
/// Offset into the index buffer, in indices, begin drawing from.
pub first_index: u32,
/// Added to each index value before indexing into the vertex buffers.
pub base_vertex: i32,
/// First instance to draw.
pub first_instance: u32,
}
/// Argument buffer layout for dispatch_indirect commands.
#[repr(C)]
#[derive(Clone, Copy, Debug)]
pub struct DispatchIndirectArgs {
/// X dimension of the grid of workgroups to dispatch.
pub group_size_x: u32,
/// Y dimension of the grid of workgroups to dispatch.
pub group_size_y: u32,
/// Z dimension of the grid of workgroups to dispatch.
pub group_size_z: u32,
}
/// Describes how shader bound checks should be performed.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "trace", derive(serde::Serialize))]
#[cfg_attr(feature = "replay", derive(serde::Deserialize))]
pub struct ShaderBoundChecks {
runtime_checks: bool,
}
impl ShaderBoundChecks {
/// Creates a new configuration where the shader is bound checked.
pub fn new() -> Self {
ShaderBoundChecks {
runtime_checks: true,
}
}
/// Creates a new configuration where the shader isn't bound checked.
///
/// # Safety
/// The caller MUST ensure that all shaders built with this configuration don't perform any
/// out of bounds reads or writes.
pub unsafe fn unchecked() -> Self {
ShaderBoundChecks {
runtime_checks: false,
}
}
/// Query whether runtime bound checks are enabled in this configuration
pub fn runtime_checks(&self) -> bool {
self.runtime_checks
}
}
impl Default for ShaderBoundChecks {
fn default() -> Self {
Self::new()
}
}
/// Selects which DX12 shader compiler to use.
///
/// If the `wgpu-hal/dx12-shader-compiler` feature isn't enabled then this will fall back
/// to the Fxc compiler at runtime and log an error.
/// This feature is always enabled when using `wgpu`.
///
/// If the `Dxc` option is selected, but `dxcompiler.dll` and `dxil.dll` files aren't found,
/// then this will fall back to the Fxc compiler at runtime and log an error.
///
/// `wgpu::utils::init::dx12_shader_compiler_from_env` can be used to set the compiler
/// from the `WGPU_DX12_SHADER_COMPILER` environment variable, but this should only be used for testing.
#[derive(Clone, Debug, Default)]
pub enum Dx12Compiler {
/// The Fxc compiler (default) is old, slow and unmaintained.
///
/// However, it doesn't require any additional .dlls to be shipped with the application.
#[default]
Fxc,
/// The Dxc compiler is new, fast and maintained.
///
/// However, it requires both `dxcompiler.dll` and `dxil.dll` to be shipped with the application.
/// These files can be downloaded from <https://github.com/microsoft/DirectXShaderCompiler/releases>.
Dxc {
/// Path to the `dxcompiler.dll` file. Passing `None` will use standard platform specific dll loading rules.
dxil_path: Option<PathBuf>,
/// Path to the `dxil.dll` file. Passing `None` will use standard platform specific dll loading rules.
dxc_path: Option<PathBuf>,
},
}
/// Options for creating an instance.
pub struct InstanceDescriptor {
/// Which `Backends` to enable.
pub backends: Backends,
/// Which DX12 shader compiler to use.
pub dx12_shader_compiler: Dx12Compiler,
}
impl Default for InstanceDescriptor {
fn default() -> Self {
Self {
backends: Backends::all(),
dx12_shader_compiler: Dx12Compiler::default(),
}
}
}