vid2vid/models/base_model.py
2018-09-19 03:13:29 +00:00

109 lines
4.2 KiB
Python
Executable File

import os, sys
import torch
class BaseModel(torch.nn.Module):
def name(self):
return 'BaseModel'
def initialize(self, opt):
self.opt = opt
self.gpu_ids = opt.gpu_ids
self.isTrain = opt.isTrain
self.Tensor = torch.cuda.FloatTensor if self.gpu_ids else torch.Tensor
self.save_dir = os.path.join(opt.checkpoints_dir, opt.name)
def set_input(self, input):
self.input = input
def forward(self):
pass
# used in test time, no backprop
def test(self):
pass
def get_image_paths(self):
pass
def optimize_parameters(self):
pass
def get_current_visuals(self):
return self.input
def get_current_errors(self):
return {}
def save(self, label):
pass
# helper saving function that can be used by subclasses
def save_network(self, network, network_label, epoch_label, gpu_ids):
save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
save_path = os.path.join(self.save_dir, save_filename)
torch.save(network.cpu().state_dict(), save_path)
if len(gpu_ids) and torch.cuda.is_available():
network.cuda(gpu_ids[0])
def resolve_version(self):
import torch._utils
try:
torch._utils._rebuild_tensor_v2
except AttributeError:
def _rebuild_tensor_v2(storage, storage_offset, size, stride, requires_grad, backward_hooks):
tensor = torch._utils._rebuild_tensor(storage, storage_offset, size, stride)
tensor.requires_grad = requires_grad
tensor._backward_hooks = backward_hooks
return tensor
torch._utils._rebuild_tensor_v2 = _rebuild_tensor_v2
# helper loading function that can be used by subclasses
def load_network(self, network, network_label, epoch_label, save_dir=''):
self.resolve_version()
save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
if not save_dir:
save_dir = self.save_dir
save_path = os.path.join(save_dir, save_filename)
if not os.path.isfile(save_path):
print('%s not exists yet!' % save_path)
if 'G0' in network_label:
raise('Generator must exist!')
else:
#network.load_state_dict(torch.load(save_path))
try:
network.load_state_dict(torch.load(save_path))
except:
pretrained_dict = torch.load(save_path)
model_dict = network.state_dict()
### printout layers in pretrained model
initialized = set()
for k, v in pretrained_dict.items():
initialized.add(k.split('.')[0])
#print('pretrained model has following layers: ')
#print(sorted(initialized))
try:
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
network.load_state_dict(pretrained_dict)
print('Pretrained network %s has excessive layers; Only loading layers that are used' % network_label)
except:
print('Pretrained network %s has fewer layers; The following are not initialized:' % network_label)
if sys.version_info >= (3,0):
not_initialized = set()
else:
from sets import Set
not_initialized = Set()
for k, v in pretrained_dict.items():
if v.size() == model_dict[k].size():
model_dict[k] = v
for k, v in model_dict.items():
if k not in pretrained_dict or v.size() != pretrained_dict[k].size():
not_initialized.add(k.split('.')[0])
print(sorted(not_initialized))
network.load_state_dict(model_dict)
def update_learning_rate():
pass