vid2vid/data/test_dataset.py
2018-09-19 03:13:29 +00:00

77 lines
3.2 KiB
Python
Executable File

### Copyright (C) 2017 NVIDIA Corporation. All rights reserved.
### Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
import os.path
import torch
from data.base_dataset import BaseDataset, get_img_params, get_transform, concat_frame
from data.image_folder import make_grouped_dataset, check_path_valid
from PIL import Image
import numpy as np
class TestDataset(BaseDataset):
def initialize(self, opt):
self.opt = opt
self.root = opt.dataroot
self.dir_A = os.path.join(opt.dataroot, opt.phase + '_A')
self.dir_B = os.path.join(opt.dataroot, opt.phase + '_B')
self.use_real = opt.use_real_img
self.A_is_label = self.opt.label_nc != 0
self.A_paths = sorted(make_grouped_dataset(self.dir_A))
if self.use_real:
self.B_paths = sorted(make_grouped_dataset(self.dir_B))
check_path_valid(self.A_paths, self.B_paths)
if self.opt.use_instance:
self.dir_inst = os.path.join(opt.dataroot, opt.phase + '_inst')
self.I_paths = sorted(make_grouped_dataset(self.dir_inst))
check_path_valid(self.A_paths, self.I_paths)
self.init_frame_idx(self.A_paths)
def __getitem__(self, index):
self.A, self.B, self.I, seq_idx = self.update_frame_idx(self.A_paths, index)
tG = self.opt.n_frames_G
A_img = Image.open(self.A_paths[seq_idx][0]).convert('RGB')
params = get_img_params(self.opt, A_img.size)
transform_scaleB = get_transform(self.opt, params)
transform_scaleA = get_transform(self.opt, params, method=Image.NEAREST, normalize=False) if self.A_is_label else transform_scaleB
frame_range = list(range(tG)) if self.A is None else [tG-1]
for i in frame_range:
A_path = self.A_paths[seq_idx][self.frame_idx + i]
Ai = self.get_image(A_path, transform_scaleA, is_label=self.A_is_label)
self.A = concat_frame(self.A, Ai, tG)
if self.use_real:
B_path = self.B_paths[seq_idx][self.frame_idx + i]
Bi = self.get_image(B_path, transform_scaleB)
self.B = concat_frame(self.B, Bi, tG)
else:
self.B = 0
if self.opt.use_instance:
I_path = self.I_paths[seq_idx][self.frame_idx + i]
Ii = self.get_image(I_path, transform_scaleA) * 255.0
self.I = concat_frame(self.I, Ii, tG)
else:
self.I = 0
self.frame_idx += 1
return_list = {'A': self.A, 'B': self.B, 'inst': self.I, 'A_path': A_path, 'change_seq': self.change_seq}
return return_list
def get_image(self, A_path, transform_scaleA, is_label=False):
A_img = Image.open(A_path)
A_scaled = transform_scaleA(A_img)
if is_label:
A_scaled *= 255.0
return A_scaled
def __len__(self):
return sum(self.frames_count)
def n_of_seqs(self):
return len(self.A_paths)
def name(self):
return 'TestDataset'