vid2vid/data/custom_dataset_data_loader.py
2018-09-19 03:13:29 +00:00

45 lines
1.4 KiB
Python
Executable File

import torch.utils.data
from data.base_data_loader import BaseDataLoader
def CreateDataset(opt):
dataset = None
if opt.dataset_mode == 'temporal':
from data.temporal_dataset import TemporalDataset
dataset = TemporalDataset()
elif opt.dataset_mode == 'face':
from data.face_dataset import FaceDataset
dataset = FaceDataset()
elif opt.dataset_mode == 'pose':
from data.pose_dataset import PoseDataset
dataset = PoseDataset()
elif opt.dataset_mode == 'test':
from data.test_dataset import TestDataset
dataset = TestDataset()
else:
raise ValueError("Dataset [%s] not recognized." % opt.dataset_mode)
print("dataset [%s] was created" % (dataset.name()))
dataset.initialize(opt)
return dataset
class CustomDatasetDataLoader(BaseDataLoader):
def name(self):
return 'CustomDatasetDataLoader'
def initialize(self, opt):
BaseDataLoader.initialize(self, opt)
self.dataset = CreateDataset(opt)
self.dataloader = torch.utils.data.DataLoader(
self.dataset,
batch_size=opt.batchSize,
shuffle=not opt.serial_batches,
num_workers=int(opt.nThreads))
def load_data(self):
return self.dataloader
def __len__(self):
return min(len(self.dataset), self.opt.max_dataset_size)