three.ar.js/examples/graffiti.html

644 lines
20 KiB
HTML

<!--
/*
* Copyright 2017 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
-->
<!DOCTYPE html>
<html lang="en">
<head>
<title>three.ar.js - Graffiti</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, user-scalable=no,
minimum-scale=1.0, maximum-scale=1.0">
<style>
body {
font-family: monospace;
margin: 0;
overflow: hidden;
position: fixed;
width: 100%;
height: 100vh;
-webkit-user-select: none;
user-select: none;
}
#info {
background-color: rgba(40, 40, 40, 0.4);
bottom: 0;
box-sizing: border-box;
color: rgba(255, 255, 255, 0.7);
left: 50%;
line-height: 1.3em;
padding: 0.75em;
position: absolute;
text-align: center;
transform: translate(-50%, 0);
width: 100%;
z-index: 10;
}
.divider {
color: rgba(255, 255, 255, 0.2);
padding: 0 0.5em;
}
#info a {
text-decoration: none;
color: white;
}
canvas {
position: absolute;
top: 0;
left: 0;
}
</style>
</head>
<body>
<div id="info">
<a href="https://github.com/google-ar/three.ar.js">three.ar.js</a><span class="divider">|</span>Touch and hold to draw. Shake to undo.
</div>
<script src="../third_party/three.js/three.js"></script>
<script src="../third_party/three.js/VRControls.js"></script>
<script src="../dist/three.ar.js"></script>
<script id="fragmentShader" type="shader">
precision mediump float;
precision mediump int;
varying vec3 vPosition;
varying vec3 vNormal;
varying vec2 vUv;
varying vec3 vVelocity;
void main() {
vec2 uv = vUv;
uv *= 2.0;
uv -= 1.0;
float aa = 1.0 - abs( uv.y );
aa = smoothstep( 0.0, 0.05, aa );
gl_FragColor = vec4( vNormal, aa );
}
</script>
<script id="vertexShader" type="shader">
uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;
uniform mat3 normalMatrix;
attribute vec3 position;
attribute vec3 normal;
attribute vec2 uv;
attribute vec3 velocity;
varying vec3 vPosition;
varying vec3 vNormal;
varying vec2 vUv;
varying vec3 vVelocity;
void main()
{
vPosition = position;
vNormal = normal;
vUv = uv;
vVelocity = velocity;
gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
}
</script>
<script>
var vrDisplay;
var vrControls;
var arView;
var canvas;
var camera;
var scene;
var renderer;
// Drawing constants.
var MINIMIM_POINT_DISTANCE = 0.001;
var MINIMUM_STROKE_POINTS = 2;
var MINIMUM_BRUSH_POINTS = 2;
var STROKE_DISTANCE = 0.1;
var STROKE_WIDTH_EASING = 0.05;
var STROKE_WIDTH_MINIMUM = 0.00125;
var STROKE_WIDTH_MAXIMUM = 0.1;
var STROKE_WIDTH_MODIFIER = 1.25;
var STROKE_POSITION_EASING = 0.5;
var STROKE_VELOCITY_EASING = 0.5;
var STROKE_ORTHOGONAL_EASING = 0.5;
var STROKE_NORMAL_EASING = 0.95;
var STROKE_NORMAL_QUAT_EASING = 0.5;
var MINIMIM_ERASE_ENERGY = 0.005;
var MINIMIM_ERASE_ENERGY_FRAMES = 15;
// Setup drawing variables.
var drawing = false;
var stroke = [];
var strokes = [];
var strokeIndex = 0;
var brush;
var brushStroke = [];
var drawMaterial = new THREE.RawShaderMaterial({
vertexShader: document.getElementById( 'vertexShader' ).textContent,
fragmentShader: document.getElementById( 'fragmentShader' ).textContent,
side: THREE.DoubleSide,
transparent: true
});
/**
* Use the `getARDisplay()` utility to leverage the WebVR API
* to see if there are any AR-capable WebVR VRDisplays. Returns
* a valid display if found. Otherwise, display the unsupported
* browser message.
*/
THREE.ARUtils.getARDisplay().then(function (display) {
if (display) {
vrDisplay = display;
init();
} else {
THREE.ARUtils.displayUnsupportedMessage();
}
});
function init() {
// Turn on the debugging panel
//var arDebug = new THREE.ARDebug(vrDisplay);
//document.body.appendChild(arDebug.getElement());
// Setup the three.js rendering environment
renderer = new THREE.WebGLRenderer({ alpha: true });
renderer.setPixelRatio(window.devicePixelRatio);
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.autoClear = false;
canvas = renderer.domElement;
document.body.appendChild(canvas);
scene = new THREE.Scene();
// Creating the ARView, which is the object that handles
// the rendering of the camera stream behind the three.js
// scene
arView = new THREE.ARView(vrDisplay, renderer);
// The ARPerspectiveCamera is very similar to THREE.PerspectiveCamera,
// except when using an AR-capable browser, the camera uses
// the projection matrix provided from the device, so that the
// perspective camera's depth planes and field of view matches
// the physical camera on the device.
camera = new THREE.ARPerspectiveCamera(vrDisplay, 60, window.innerWidth / window.innerHeight, 0.01, 100);
// VRControls is a utility from three.js that applies the device's
// orientation/position to the perspective camera, keeping our
// real world and virtual world in sync.
vrControls = new THREE.VRControls(camera);
// Bind our event handlers
window.addEventListener('resize', onWindowResize, false);
// Start drawing when the user touches the screen.
renderer.domElement.addEventListener('touchstart', function(event) {
drawing = true;
});
// Stop the current draw stroke when the user finishes the touch.
renderer.domElement.addEventListener('touchend', function(event) {
drawing = false;
stroke.length = 0;
strokeIndex += 1;
});
update();
}
// Get a point in front of the device to use as the drawing location.
// Pass in a THREE.Vector3 to be populated with data to avoid creating garbage.
// This strange function structure is a way of avoiding creating garbage while
// generating the rotated forward vector.
var getDrawPoint = (function() {
// Setup a basic forward vector (scaled down so it's not so far away).
var forward = new THREE.Vector3(0, 0, -1).multiplyScalar(STROKE_DISTANCE);
// Create a scratch vector for generating the rotated forward vector.
var rotatedForward = new THREE.Vector3();
return function(out) {
// Start with the camera position, which is equivalent to device pose.
out.copy(camera.position);
// Rotate the forward vector by the pose orientation.
rotatedForward.copy(forward);
rotatedForward.applyQuaternion(camera.quaternion);
out.add(rotatedForward);
}
})();
// Basic physics parameters to help smooth out input data for nicer
// brsuh strokes
var strokeWidth = STROKE_WIDTH_MINIMUM;
var position = new THREE.Vector3();
var previousPosition = new THREE.Vector3();
var normalQuat = new THREE.Quaternion();
var previousNormalQuat = new THREE.Quaternion();
var normal = new THREE.Vector3(0, 0, 1);
var previousNormal = new THREE.Vector3(0, 0, 1);
var velocity = new THREE.Vector3();
var previousVelocity = new THREE.Vector3();
var acceleration = new THREE.Vector3();
// An array to keep track of the past accelerations
var accelerationArray = [];
/**
* This function returns an object that represents a point in the stroke.
* The position, normal, velocity and width values are used to help calculate
* how the stroke will look. They are set by the physics values being
* calculated every frame inside the updatePhysics function
*/
function getStroke()
{
return {
position: new THREE.Vector3(position.x, position.y, position.z),
normal: new THREE.Vector3(normal.x, normal.y, normal.z),
velocity: new THREE.Vector3(velocity.x, velocity.y, velocity.z),
width: strokeWidth
};
}
/**
* This function is called when the user touches down and starts to draw
* a stroke
*/
function processDraw() {
// Add the draw point to the current stroke.
stroke.push(getStroke());
// Check to see if you have enough points (2) to start drawing a stroke
if(stroke.length < MINIMUM_STROKE_POINTS) {
return;
}
// Get the last two points in the stroke
var s0 = stroke[stroke.length - 2];
var s1 = stroke[stroke.length - 1];
// Check if the distance between the last two points is bigger
// than a set amount, this avoids tiny strips in the brush stroke
if(s0.position.distanceTo(s1.position) < MINIMIM_POINT_DISTANCE) {
stroke.pop();
return;
}
// Remove the old stroke from the scene so we can regenerate the stroke.
if (strokes[strokeIndex]) {
scene.remove(strokes[strokeIndex]);
}
// Generate a new stroke and cache it in our array of strokes
strokes[strokeIndex] = generateStroke(stroke);
// Add the stroke to the threejs scene for rendering
scene.add(strokes[strokeIndex]);
}
/**
* This function is responsible for constantly rendering a brush reticle
* when the user is not touching down on the screen. This helps to pre-
* visualize the dynamics of the brush (color, stroke width, etc)
*/
function processDrawBrush() {
// Add the draw point to the current stroke.
brushStroke.push(getStroke());
// Don't use positions if they aren't far enough away from the previous point.
if(brushStroke.length < MINIMUM_BRUSH_POINTS) {
return;
}
// Remove the old brush reticle from the scene so we can regenerate it
if (brush) {
brushStroke.shift();
scene.remove(brush);
}
// Get the last two points in the stroke
var b0 = brushStroke[brushStroke.length - 2];
var b1 = brushStroke[brushStroke.length - 1];
// Check if the distance between the last two points is bigger
// than a set amount, this avoids tiny strips in the brush stroke
if(b0.position.distanceTo(b1.position) < MINIMIM_POINT_DISTANCE) {
return;
}
// Generate a new stroke and sets it to brush reticle
brush = generateStroke(brushStroke);
// Add the brush reticle to the threejs scene for rendering
scene.add(brush);
}
/**
* This function calculates the positions, normals, uvs and velocities
* float32Arrays needed to create a buffer geometry so we can render our brush
* strokes using threejs (WebGL)
*/
function generateStroke(strokeData) {
// Create Float32Arrays of the proper size to hold vertex information
// Each stroke is rendered by a triangle strip, thus each stroke point yields
// two verticies, and each vertex contains three (x, y, z) or two
// floats (u, v) depending on property.
var positions = new Float32Array(strokeData.length * 2 * 3);
var normals = new Float32Array(strokeData.length * 2 * 3);
var uvs = new Float32Array(strokeData.length * 2 * 2);
var velocities = new Float32Array(strokeData.length * 2 * 3);
// Create a Vector3 to cache the vertex offset vector
var v = new THREE.Vector3();
// Create a reference to the last stroke point's velocity
var lastVelocity;
// Create two Vector3s to cache the positions of the two vertex positions
// calculated from the origin stroke position and its physics properties
var p1 = new THREE.Vector3();
var p2 = new THREE.Vector3();
// Create a variable to keep track of whether the current stroke point's
// velocity is in the opposite direction of the last point's velocity
var flip = false;
// loop through the stroke points and calculate its two emiited vertex
// offset positions and set their other properties in the Float32Arrays
// created above
for (var i = 0; i < strokeData.length; i++) {
// Get the current stroke point
var entry = strokeData[i];
// Calculate the stroke point's offset by using the cross product of the
// stroke point's normal and its velocity
v.crossVectors(entry.normal, entry.velocity);
// Normalize the vector and scale it by the precalculated stroke width
v.normalize();
// This width is based on how fast the user was moving the device when the
// stroke was drawn
v.multiplyScalar(entry.width);
// If this isn't the first point check for a velocity flip, otherwise create
// a new Vector3
if( lastVelocity ) {
// Use the dot product to check whether the current velocity is in the
// direction as the previous stroke's velocity
var directionChange = lastVelocity.dot( entry.velocity );
if( directionChange < 0 ) {
flip = !flip;
}
}
else {
lastVelocity = new THREE.Vector3();
}
lastVelocity.copy( entry.velocity );
// this is used to avoid improper drawing of triangles when the user
// changes direction of a stroke
if( flip ) {
p1.addVectors(entry.position, v);
p2.subVectors(entry.position, v);
}
else {
p1.subVectors(entry.position, v);
p2.addVectors(entry.position, v);
}
// Calculate the offset for the current vertex (i * 2 * 3)
// Set the positions for the ith and ith + 1 verticies
var index = i * 2 * 3;
positions[index] = p1.x;
positions[index + 1] = p1.y;
positions[index + 2] = p1.z;
positions[index + 3] = p2.x;
positions[index + 4] = p2.y;
positions[index + 5] = p2.z;
// Calculate the offset for the current vertex (i * 2 * 3)
index = i * 2 * 3;
// Set the normals for the ith and ith + 1 verticies
normals[index] = entry.normal.x;
normals[index + 1] = entry.normal.y;
normals[index + 2] = entry.normal.z;
normals[index + 3] = entry.normal.x;
normals[index + 4] = entry.normal.y;
normals[index + 5] = entry.normal.z;
// Calculate the offset for the current vertex (i * 2 * 3)
index = i * 2 * 3;
// Set the velocities for the ith and ith + 1 verticies
velocities[index] = entry.velocity.x;
velocities[index + 1] = entry.velocity.y;
velocities[index + 2] = entry.velocity.z;
velocities[index + 3] = entry.velocity.x;
velocities[index + 4] = entry.velocity.y;
velocities[index + 5] = entry.velocity.z;
// Calculate the offset for the current vertex (i * 2 * 3)
index = i * 2 * 2;
// Set the uvs for the ith and ith + 1 verticies
// Each complete stroke has vertex coordinates from (0,0) to (1,1)
uvs[index] = i / (strokeData.length - 1);
uvs[index + 1] = 0;
uvs[index + 2] = i / (strokeData.length - 1);
uvs[index + 3] = 1;
}
// Create a Threejs BufferGeometry
var geometry = new THREE.BufferGeometry();
function disposeArray() { this.array = null; }
// Add attributes to the buffer geometry using the Float32Arrays created
// above. This will tell our shader pipeline information about each vertex
// so we can create all types of dynamic strokes & paints
geometry.addAttribute('position', new THREE.BufferAttribute(positions, 3).onUpload(disposeArray));
geometry.addAttribute('normal', new THREE.BufferAttribute(normals, 3).onUpload(disposeArray));
geometry.addAttribute('uv', new THREE.BufferAttribute(uvs, 2).onUpload(disposeArray));
geometry.addAttribute('velocity', new THREE.BufferAttribute(velocities, 3).onUpload(disposeArray));
geometry.computeBoundingSphere();
// Create a Threejs mesh and set its draw mode to triangle strips
var mesh = new THREE.Mesh(geometry, drawMaterial);
mesh.drawMode = THREE.TriangleStripDrawMode;
return mesh;
}
/**
* Small utility function to sum the last n frames of acceleration to see if
* the device was shaken. If the device was shaken, then the last stroke is
* erased.
*/
function checkForShake()
{
//Calculate the current acceleration's magnitude and add it to the
// acceleration array
accelerationArray.push(acceleration.length());
var len = accelerationArray.length;
// if the accelerationArray has enough frames to calculate whether the user
// has shaken the device, then check for a shake
if(len > MINIMIM_ERASE_ENERGY_FRAMES) {
// Sum the "energy" total by looping through the accelerationArray values
var energy = 0;
for(var i = 0; i < len; i++) {
energy += accelerationArray[i];
}
// Check to see if the total energy is greate than a preset amount
// this amount was calculated via user testing different shake thresholds
if(energy > MINIMIM_ERASE_ENERGY * MINIMIM_ERASE_ENERGY_FRAMES) {
// If a shake was detected, clear the accelerationArray so we don't get
// multiple shakes in a small time frame
accelerationArray.length = 0;
// This is the action that happens when the user shakes the device, the
// app clears or removes the last stroke
clearLastStroke();
}
else {
// If the energy wasn't high enough pop off the oldest acceleration value
accelerationArray.shift();
}
}
}
/**
* Clears all the strokes and essentially lets the user start over
*/
function clearStrokes()
{
// If the user if currently drawing, stop
drawing = false;
// Clear the current stroke array
stroke.length = 0;
// Reset the current stroke index
strokeIndex = 0;
// Remove all the threejs mesh strokes from the scene
var len = strokes.length;
for( var i = 0; i < len; i++ ) {
scene.remove(strokes[i]);
}
}
/**
* Clears the last stroke, acts essentially as an UNDO
*/
function clearLastStroke()
{
// If the user if currently drawing, stop, and remove the stroke
if( drawing ) {
drawing = false;
scene.remove(strokes[strokeIndex]);
stroke.length = 0;
}
// Also remove the last drawn stroke
strokeIndex -= 1;
scene.remove(strokes[strokeIndex]);
}
/**
* update physics function, called once per frame. Handles updating and
* smoothing out rough input data from AR Session
*/
function updatePhysics()
{
// Cache previous positions & normals
previousPosition.copy(position);
previousNormal.copy(normal);
previousNormalQuat.copy(normalQuat);
previousVelocity.copy(velocity);
// Update Drawing Stroke Position
getDrawPoint(position);
position.lerpVectors(previousPosition, position, STROKE_POSITION_EASING);
normalQuat.slerp(camera.quaternion, STROKE_NORMAL_QUAT_EASING);
// Update Drawing Stroke Normal
normal.set(0, 0, 1);
normal.applyQuaternion(normalQuat);
normal.normalize();
normal.lerpVectors(previousNormal, normal, STROKE_NORMAL_EASING);
// Update velocity
velocity.subVectors(position, previousPosition);
velocity.lerpVectors(previousVelocity, velocity, STROKE_VELOCITY_EASING);
// Update acceleration
acceleration.subVectors(velocity, previousVelocity);
// Update Drawing Stroke Width
strokeWidth = THREE.Math.lerp(strokeWidth, velocity.length() * STROKE_WIDTH_MODIFIER, STROKE_WIDTH_EASING);
strokeWidth = Math.min( Math.max( strokeWidth, STROKE_WIDTH_MINIMUM ), STROKE_WIDTH_MAXIMUM );
}
/**
* The render loop, called once per frame. Handles updating
* our scene and rendering.
*/
function update() {
// Render the device's camera stream on screen first of all.
// It allows to get the right pose synchronized with the right frame.
arView.render();
// Update our camera projection matrix in the event that
// the near or far planes have updated
camera.updateProjectionMatrix();
// Update our perspective camera's positioning
vrControls.update();
// Update Brush Physics
updatePhysics();
// Check for shake to undo functionality
checkForShake();
// Update the current graffiti stroke.
if (drawing) {
processDraw();
}
// Uncomment to draw brush reticle
// processDrawBrush();
// Render our three.js virtual scene
renderer.clearDepth();
renderer.render(scene, camera);
// Kick off the requestAnimationFrame to call this function
// on the next frame
requestAnimationFrame(update);
}
/**
* On window resize, update the perspective camera's aspect ratio,
* and call `updateProjectionMatrix` so that we can get the latest
* projection matrix provided from the device
*/
function onWindowResize () {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize(window.innerWidth, window.innerHeight);
}
</script>
</body>
</html>