mirror of
https://github.com/rasterio/rasterio.git
synced 2026-01-18 14:01:55 +00:00
* DEP: Python 3.10+, GDAL 3.5+, numpy 1.24+ * Apply suggestions from code review * DEP: GDAL 3.5+, numpy 1.24+ * Fix * remove python 3.13 from conda matrix --------- Co-authored-by: Sean Gillies <sean.gillies@gmail.com>
1295 lines
38 KiB
Python
1295 lines
38 KiB
Python
from copy import deepcopy
|
|
import math
|
|
from unittest import mock
|
|
|
|
from affine import Affine
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import rasterio
|
|
from rasterio.enums import MergeAlg
|
|
from rasterio.errors import WindowError, ShapeSkipWarning
|
|
from rasterio.features import (
|
|
bounds, geometry_mask, geometry_window, is_valid_geom, rasterize, sieve,
|
|
shapes)
|
|
|
|
from .conftest import (
|
|
MockGeoInterface, gdal_version, requires_gdal_lt_37, requires_gdal37
|
|
)
|
|
|
|
DEFAULT_SHAPE = (10, 10)
|
|
|
|
|
|
def test_bounds_point():
|
|
g = {'type': 'Point', 'coordinates': [10, 10]}
|
|
assert bounds(g) == (10, 10, 10, 10)
|
|
assert bounds(MockGeoInterface(g)) == (10, 10, 10, 10)
|
|
|
|
|
|
def test_bounds_line():
|
|
g = {'type': 'LineString', 'coordinates': [[0, 0], [10, 10]]}
|
|
assert bounds(g) == (0, 0, 10, 10)
|
|
assert bounds(MockGeoInterface(g)) == (0, 0, 10, 10)
|
|
|
|
|
|
def test_bounds_ring():
|
|
g = {'type': 'LinearRing', 'coordinates': [[0, 0], [10, 10], [10, 0]]}
|
|
assert bounds(g) == (0, 0, 10, 10)
|
|
assert bounds(MockGeoInterface(g)) == (0, 0, 10, 10)
|
|
|
|
|
|
def test_bounds_polygon():
|
|
g = {'type': 'Polygon', 'coordinates': [[[0, 0], [10, 10], [10, 0]]]}
|
|
assert bounds(g) == (0, 0, 10, 10)
|
|
assert bounds(MockGeoInterface(g)) == (0, 0, 10, 10)
|
|
|
|
|
|
def test_bounds_z():
|
|
g = {'type': 'Point', 'coordinates': [10, 10, 10]}
|
|
assert bounds(g) == (10, 10, 10, 10)
|
|
assert bounds(MockGeoInterface(g)) == (10, 10, 10, 10)
|
|
|
|
|
|
@pytest.mark.parametrize('geometry', [
|
|
{'type': 'Polygon'},
|
|
{'type': 'Polygon', 'not_coordinates': []},
|
|
{'type': 'bogus', 'not_coordinates': []},
|
|
{
|
|
'type': 'GeometryCollection',
|
|
'geometries': [
|
|
{'type': 'Point', 'coordinates': [1, 1]},
|
|
{'type': 'LineString', 'not_coordinates': [[-10, -20], [10, 20]]},
|
|
]
|
|
}
|
|
])
|
|
def test_bounds_invalid_obj(geometry):
|
|
with pytest.raises(ValueError, match="geometry must be a GeoJSON-like geometry, GeometryCollection, or FeatureCollection"):
|
|
bounds(geometry)
|
|
|
|
|
|
def test_bounds_feature_collection(basic_featurecollection):
|
|
fc = basic_featurecollection
|
|
assert bounds(fc) == bounds(fc['features'][0]) == (2, 2, 4.25, 4.25)
|
|
|
|
|
|
def test_bounds_geometry_collection():
|
|
gc = {
|
|
'type': 'GeometryCollection',
|
|
'geometries': [
|
|
{'type': 'Point', 'coordinates': [1, 1]},
|
|
{'type': 'LineString', 'coordinates': [[-10, -20], [10, 20]]},
|
|
{'type': 'Polygon', 'coordinates': [[[5, 5], [25, 50], [25, 5]]]}
|
|
]
|
|
}
|
|
|
|
assert bounds(gc) == (-10, -20, 25, 50)
|
|
assert bounds(MockGeoInterface(gc)) == (-10, -20, 25, 50)
|
|
|
|
|
|
def test_bounds_existing_bbox(basic_featurecollection):
|
|
"""Test with existing bbox in geojson.
|
|
|
|
Similar to that produced by rasterio. Values specifically modified here
|
|
for testing, bboxes are not valid as written.
|
|
"""
|
|
fc = basic_featurecollection
|
|
fc['bbox'] = [0, 10, 10, 20]
|
|
fc['features'][0]['bbox'] = [0, 100, 10, 200]
|
|
|
|
assert bounds(fc['features'][0]) == (0, 100, 10, 200)
|
|
assert bounds(fc) == (0, 10, 10, 20)
|
|
|
|
|
|
def test_geometry_mask(basic_geometry, basic_image_2x2):
|
|
assert np.array_equal(
|
|
basic_image_2x2 == 0,
|
|
geometry_mask(
|
|
[basic_geometry],
|
|
out_shape=DEFAULT_SHAPE,
|
|
transform=Affine.identity()
|
|
)
|
|
)
|
|
|
|
|
|
def test_geometry_mask_invert(basic_geometry, basic_image_2x2):
|
|
assert np.array_equal(
|
|
basic_image_2x2,
|
|
geometry_mask(
|
|
[basic_geometry],
|
|
out_shape=DEFAULT_SHAPE,
|
|
transform=Affine.identity(),
|
|
invert=True
|
|
)
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"geom",
|
|
[{"type": "Invalid"}, {"type": "Point"}, {"type": "Point", "coordinates": []}],
|
|
)
|
|
def test_geometry_invalid_geom(geom):
|
|
"""An invalid geometry should fail"""
|
|
with pytest.warns(ShapeSkipWarning):
|
|
mask = geometry_mask(
|
|
[geom],
|
|
out_shape=DEFAULT_SHAPE,
|
|
transform=Affine.identity())
|
|
|
|
assert mask.shape == DEFAULT_SHAPE
|
|
assert np.all(mask == True)
|
|
|
|
|
|
def test_geometry_mask_invalid_shape(basic_geometry):
|
|
"""A width==0 or height==0 should fail with ValueError"""
|
|
|
|
for shape in [(0, 0), (1, 0), (0, 1)]:
|
|
with pytest.raises(ValueError) as exc_info:
|
|
geometry_mask(
|
|
[basic_geometry],
|
|
out_shape=shape,
|
|
transform=Affine.identity())
|
|
|
|
assert 'must be > 0' in exc_info.value.args[0]
|
|
|
|
|
|
def test_geometry_mask_no_transform(basic_geometry):
|
|
with pytest.raises(TypeError):
|
|
geometry_mask(
|
|
[basic_geometry],
|
|
out_shape=DEFAULT_SHAPE,
|
|
transform=None)
|
|
|
|
|
|
def test_geometry_window_no_pad(basic_image_file, basic_geometry):
|
|
with rasterio.open(basic_image_file) as src:
|
|
window = geometry_window(src, [basic_geometry, basic_geometry])
|
|
assert window.flatten() == (2, 2, 3, 3)
|
|
|
|
|
|
def test_geometry_window_geo_interface(basic_image_file, basic_geometry):
|
|
with rasterio.open(basic_image_file) as src:
|
|
window = geometry_window(src, [MockGeoInterface(basic_geometry)])
|
|
assert window.flatten() == (2, 2, 3, 3)
|
|
|
|
|
|
def test_geometry_window_pixel_precision(basic_image_file):
|
|
"""Window offsets should be floor, width and height ceiling"""
|
|
|
|
geom2 = {
|
|
'type': 'Polygon',
|
|
'coordinates': [[
|
|
(1.99999, 2),
|
|
(1.99999, 4.0001), (4.0001, 4.0001), (4.0001, 2),
|
|
(1.99999, 2)
|
|
]]
|
|
}
|
|
|
|
with rasterio.open(basic_image_file) as src:
|
|
window = geometry_window(src, [geom2], pixel_precision=6)
|
|
assert window.flatten() == (1, 2, 4, 3)
|
|
|
|
|
|
def test_geometry_window_north_up(path_rgb_byte_tif):
|
|
geometry = {
|
|
'type': 'Polygon',
|
|
'coordinates': [[
|
|
(200000, 2700000),
|
|
(200000, 2750000),
|
|
(250000, 2750000),
|
|
(250000, 2700000),
|
|
(200000, 2700000)
|
|
]]
|
|
}
|
|
|
|
with rasterio.open(path_rgb_byte_tif) as src:
|
|
window = geometry_window(src, [geometry])
|
|
assert window.flatten() == (326, 256, 168, 167)
|
|
|
|
|
|
def test_geometry_window_rotated_boundless():
|
|
"""Get the right boundless window for a rotated dataset"""
|
|
sqrt2 = math.sqrt(2.0)
|
|
dataset = mock.MagicMock()
|
|
dataset.transform = (
|
|
Affine.rotation(-45.0)
|
|
* Affine.translation(-sqrt2, sqrt2)
|
|
* Affine.scale(sqrt2 / 2.0, -sqrt2 / 2.0)
|
|
)
|
|
dataset.height = 4.0
|
|
dataset.width = 4.0
|
|
|
|
geometry = {
|
|
"type": "Polygon",
|
|
"coordinates": [
|
|
[(-2.0, -2.0), (-2.0, 2.0), (2.0, 2.0), (2.0, -2.0), (-2.0, -2.0),]
|
|
],
|
|
}
|
|
|
|
win = geometry_window(dataset, [geometry, geometry], boundless=True)
|
|
assert win.col_off == pytest.approx(-2.0)
|
|
assert win.row_off == pytest.approx(-2.0)
|
|
assert win.width == pytest.approx(2.0 * dataset.width)
|
|
assert win.height == pytest.approx(2.0 * dataset.height)
|
|
|
|
|
|
def test_geometry_window_pad(basic_image_file, basic_geometry):
|
|
# Note: this dataset's geotransform is not a geographic one.
|
|
# x increases with col, but y also increases with row.
|
|
# It's flipped, not rotated like a south-up world map.
|
|
with rasterio.open(basic_image_file) as src:
|
|
transform = src.transform
|
|
dataset = mock.MagicMock()
|
|
dataset.res = src.res
|
|
dataset.transform = src.transform
|
|
dataset.height = src.height
|
|
dataset.width = src.width
|
|
window = geometry_window(dataset, [basic_geometry], pad_x=0.5, pad_y=0.5)
|
|
|
|
assert window.flatten() == (1, 1, 4, 4)
|
|
|
|
|
|
def test_geometry_window_large_shapes(basic_image_file):
|
|
geometry = {
|
|
'type': 'Polygon',
|
|
'coordinates': [[
|
|
(-2000, -2000),
|
|
(-2000, 2000),
|
|
(2000, 2000),
|
|
(2000, -2000),
|
|
(-2000, -2000)
|
|
]]
|
|
}
|
|
|
|
with rasterio.open(basic_image_file) as src:
|
|
window = geometry_window(src, [geometry])
|
|
assert window.flatten() == (0, 0, src.height, src.width)
|
|
|
|
|
|
def test_geometry_window_no_overlap(path_rgb_byte_tif, basic_geometry):
|
|
"""Geometries that do not overlap raster raises WindowError"""
|
|
|
|
with rasterio.open(path_rgb_byte_tif) as src:
|
|
with pytest.raises(WindowError):
|
|
geometry_window(src, [basic_geometry], north_up=False)
|
|
|
|
|
|
def test_is_valid_geo_interface(geojson_point):
|
|
"""Properly formed Point object with geo interface is valid"""
|
|
assert is_valid_geom(MockGeoInterface(geojson_point))
|
|
|
|
|
|
def test_is_valid_geom_point(geojson_point):
|
|
"""Properly formed GeoJSON Point is valid"""
|
|
assert is_valid_geom(geojson_point)
|
|
|
|
# Empty coordinates are invalid
|
|
geojson_point['coordinates'] = []
|
|
assert not is_valid_geom(geojson_point)
|
|
|
|
|
|
def test_is_valid_geom_multipoint(geojson_multipoint):
|
|
"""Properly formed GeoJSON MultiPoint is valid"""
|
|
assert is_valid_geom(geojson_multipoint)
|
|
|
|
# Empty iterable is invalid
|
|
geom = deepcopy(geojson_multipoint)
|
|
geom['coordinates'] = []
|
|
assert not is_valid_geom(geom)
|
|
|
|
# Empty first coordinate is invalid
|
|
geom = deepcopy(geojson_multipoint)
|
|
geom['coordinates'] = [[]]
|
|
|
|
|
|
def test_is_valid_geom_line(geojson_line):
|
|
"""Properly formed GeoJSON LineString is valid"""
|
|
|
|
assert is_valid_geom(geojson_line)
|
|
|
|
# Empty iterable is invalid
|
|
geom = deepcopy(geojson_line)
|
|
geom['coordinates'] = []
|
|
assert not is_valid_geom(geom)
|
|
|
|
# Empty first coordinate is invalid
|
|
geom = deepcopy(geojson_line)
|
|
geom['coordinates'] = [[]]
|
|
|
|
|
|
def test_is_valid_geom_multiline(geojson_line):
|
|
"""Properly formed GeoJSON MultiLineString is valid"""
|
|
|
|
assert is_valid_geom(geojson_line)
|
|
|
|
# Empty iterables are invalid
|
|
geom = deepcopy(geojson_line)
|
|
geom['coordinates'] = []
|
|
assert not is_valid_geom(geom)
|
|
|
|
geom = deepcopy(geojson_line)
|
|
geom['coordinates'] = [[]]
|
|
assert not is_valid_geom(geom)
|
|
|
|
# Empty first coordinate is invalid
|
|
geom = deepcopy(geojson_line)
|
|
geom['coordinates'] = [[[]]]
|
|
assert not is_valid_geom(geom)
|
|
|
|
|
|
def test_is_valid_geom_polygon(geojson_polygon):
|
|
"""Properly formed GeoJSON Polygon is valid"""
|
|
|
|
assert is_valid_geom(geojson_polygon)
|
|
|
|
# Empty iterables are invalid
|
|
geom = deepcopy(geojson_polygon)
|
|
geom['coordinates'] = []
|
|
assert not is_valid_geom(geom)
|
|
|
|
geom = deepcopy(geojson_polygon)
|
|
geom['coordinates'] = [[]]
|
|
assert not is_valid_geom(geom)
|
|
|
|
# Empty first coordinate is invalid
|
|
geom = deepcopy(geojson_polygon)
|
|
geom['coordinates'] = [[[]]]
|
|
assert not is_valid_geom(geom)
|
|
|
|
|
|
def test_is_valid_geom_ring(geojson_polygon):
|
|
"""Properly formed GeoJSON LinearRing is valid"""
|
|
geojson_ring = deepcopy(geojson_polygon)
|
|
geojson_ring['type'] = 'LinearRing'
|
|
# take first ring from polygon as sample
|
|
geojson_ring['coordinates'] = geojson_ring['coordinates'][0]
|
|
assert is_valid_geom(geojson_ring)
|
|
|
|
# Empty iterables are invalid
|
|
geom = deepcopy(geojson_ring)
|
|
geom['coordinates'] = []
|
|
assert not is_valid_geom(geom)
|
|
|
|
geom = deepcopy(geojson_ring)
|
|
geom['coordinates'] = [[]]
|
|
assert not is_valid_geom(geom)
|
|
|
|
|
|
def test_is_valid_geom_multipolygon(geojson_multipolygon):
|
|
"""Properly formed GeoJSON MultiPolygon is valid"""
|
|
|
|
assert is_valid_geom(geojson_multipolygon)
|
|
|
|
# Empty iterables are invalid
|
|
geom = deepcopy(geojson_multipolygon)
|
|
geom['coordinates'] = []
|
|
assert not is_valid_geom(geom)
|
|
|
|
geom = deepcopy(geojson_multipolygon)
|
|
geom['coordinates'] = [[]]
|
|
assert not is_valid_geom(geom)
|
|
|
|
geom = deepcopy(geojson_multipolygon)
|
|
geom['coordinates'] = [[[]]]
|
|
assert not is_valid_geom(geom)
|
|
|
|
# Empty first coordinate is invalid
|
|
geom = deepcopy(geojson_multipolygon)
|
|
geom['coordinates'] = [[[[]]]]
|
|
assert not is_valid_geom(geom)
|
|
|
|
|
|
def test_is_valid_geom_geomcollection(geojson_geomcollection):
|
|
"""Properly formed GeoJSON GeometryCollection is valid"""
|
|
|
|
assert is_valid_geom(geojson_geomcollection)
|
|
|
|
# Empty GeometryCollection is invalid
|
|
geom = deepcopy(geojson_geomcollection)
|
|
geom['geometries'] = []
|
|
assert not is_valid_geom(geom)
|
|
|
|
|
|
@pytest.mark.parametrize("geom", [None, 1, "foo", "type", ["type"], {"type": "Invalid"}, {"type": "Point"}])
|
|
def test_is_valid_geom_invalid_inputs(geom):
|
|
"""Improperly formed GeoJSON objects should fail"""
|
|
assert not is_valid_geom(geom)
|
|
|
|
|
|
def test_rasterize_point(geojson_point):
|
|
expected = np.zeros(shape=DEFAULT_SHAPE, dtype='uint8')
|
|
expected[2, 2] = 1
|
|
|
|
assert np.array_equal(
|
|
rasterize([geojson_point], out_shape=DEFAULT_SHAPE),
|
|
expected
|
|
)
|
|
|
|
|
|
def test_rasterize_to_dataset(tmp_path, geojson_point):
|
|
expected = np.zeros(shape=DEFAULT_SHAPE, dtype="uint8")
|
|
expected[2, 2] = 1
|
|
|
|
with rasterio.open(
|
|
tmp_path / "test.tif",
|
|
"w",
|
|
driver="GTiff",
|
|
count=1,
|
|
width=10,
|
|
height=10,
|
|
dtype="uint8",
|
|
crs="EPSG:4326",
|
|
transform=Affine.translation(0.0, 0.0) * Affine.scale(1.0, 1.0),
|
|
) as dst:
|
|
rasterize([geojson_point], dst_path=dst)
|
|
|
|
with rasterio.open(tmp_path / "test.tif") as dst:
|
|
result = dst.read(indexes=1)
|
|
|
|
assert np.array_equal(result, expected)
|
|
|
|
|
|
def test_rasterize_to_file(tmp_path, geojson_point):
|
|
expected = np.zeros(shape=DEFAULT_SHAPE, dtype="uint8")
|
|
expected[2, 2] = 1
|
|
expected = np.ma.masked_equal(expected, 0)
|
|
|
|
dst_kwds = dict(
|
|
driver="GTiff",
|
|
count=1,
|
|
width=10,
|
|
height=10,
|
|
dtype="uint8",
|
|
crs="EPSG:4326",
|
|
transform=Affine.translation(0.0, 0.0) * Affine.scale(1.0, 1.0),
|
|
)
|
|
rasterize(
|
|
[geojson_point], nodata=0.0, dst_path=(tmp_path / "test.tif"), dst_kwds=dst_kwds
|
|
)
|
|
|
|
with rasterio.open(tmp_path / "test.tif") as dst:
|
|
result = dst.read(indexes=1, masked=True)
|
|
|
|
assert np.array_equal(result, expected)
|
|
|
|
|
|
def test_rasterize_point_dtype_int(geojson_point):
|
|
"""Demonstrate fix of #3043."""
|
|
expected = np.zeros(shape=DEFAULT_SHAPE, dtype=int)
|
|
expected[2, 2] = 1
|
|
|
|
assert np.array_equal(
|
|
rasterize([geojson_point], out_shape=DEFAULT_SHAPE),
|
|
expected
|
|
)
|
|
|
|
|
|
def test_rasterize_multipoint(geojson_multipoint):
|
|
expected = np.zeros(shape=DEFAULT_SHAPE, dtype='uint8')
|
|
expected[2, 2] = 1
|
|
expected[4, 4] = 1
|
|
|
|
assert np.array_equal(
|
|
rasterize([geojson_multipoint], out_shape=DEFAULT_SHAPE), expected
|
|
)
|
|
|
|
|
|
def test_rasterize_multipoint_masked(geojson_multipoint):
|
|
expected = np.zeros(shape=DEFAULT_SHAPE, dtype="uint8")
|
|
expected[2, 2] = 1
|
|
expected[4, 4] = 1
|
|
expected = np.ma.masked_equal(expected, 0)
|
|
|
|
assert np.array_equal(
|
|
rasterize([geojson_multipoint], out_shape=DEFAULT_SHAPE, masked=True), expected
|
|
)
|
|
|
|
|
|
def test_rasterize_line(geojson_line):
|
|
expected = np.zeros(shape=DEFAULT_SHAPE, dtype='uint8')
|
|
expected[2, 2] = 1
|
|
expected[3, 3] = 1
|
|
expected[4, 4] = 1
|
|
|
|
assert np.array_equal(
|
|
rasterize([geojson_line], out_shape=DEFAULT_SHAPE),
|
|
expected
|
|
)
|
|
|
|
|
|
def test_rasterize_multiline(geojson_multiline):
|
|
expected = np.zeros(shape=DEFAULT_SHAPE, dtype='uint8')
|
|
expected[2, 2] = 1
|
|
expected[3, 3] = 1
|
|
expected[4, 4] = 1
|
|
expected[0, 0:5] = 1
|
|
|
|
assert np.array_equal(
|
|
rasterize([geojson_multiline], out_shape=DEFAULT_SHAPE),
|
|
expected
|
|
)
|
|
|
|
|
|
def test_rasterize_polygon(geojson_polygon, basic_image_2x2):
|
|
assert np.array_equal(
|
|
rasterize([geojson_polygon], out_shape=DEFAULT_SHAPE),
|
|
basic_image_2x2
|
|
)
|
|
|
|
|
|
def test_rasterize_multipolygon(geojson_multipolygon):
|
|
expected = np.zeros(shape=DEFAULT_SHAPE, dtype='uint8')
|
|
expected[0:1, 0:1] = 1
|
|
expected[2:4, 2:4] = 1
|
|
|
|
assert np.array_equal(
|
|
rasterize([geojson_multipolygon], out_shape=DEFAULT_SHAPE),
|
|
expected
|
|
)
|
|
|
|
|
|
def test_rasterize_geomcollection(geojson_geomcollection):
|
|
expected = np.zeros(shape=DEFAULT_SHAPE, dtype='uint8')
|
|
expected[0:1, 0:1] = 1
|
|
expected[2:4, 2:4] = 1
|
|
|
|
assert np.array_equal(
|
|
rasterize([geojson_geomcollection], out_shape=DEFAULT_SHAPE),
|
|
expected
|
|
)
|
|
|
|
|
|
def test_rasterize_geo_interface(geojson_polygon, basic_image_2x2):
|
|
assert np.array_equal(
|
|
rasterize([MockGeoInterface(geojson_polygon)], out_shape=DEFAULT_SHAPE),
|
|
basic_image_2x2
|
|
)
|
|
|
|
|
|
def test_rasterize_geomcollection_no_hole():
|
|
"""
|
|
Make sure that bug reported in
|
|
https://github.com/rasterio/rasterio/issues/1253
|
|
does not recur. GeometryCollections are flattened to individual parts,
|
|
and should result in no holes where parts overlap.
|
|
"""
|
|
|
|
geomcollection = {'type': 'GeometryCollection', 'geometries': [
|
|
{'type': 'Polygon',
|
|
'coordinates': (((0, 0), (0, 5), (5, 5), (5, 0), (0, 0)),)},
|
|
{'type': 'Polygon',
|
|
'coordinates': (((2, 2), (2, 7), (7, 7), (7, 2), (2, 2)),)}
|
|
]}
|
|
|
|
expected = rasterize(geomcollection['geometries'], out_shape=DEFAULT_SHAPE)
|
|
|
|
assert np.array_equal(
|
|
rasterize([geomcollection], out_shape=DEFAULT_SHAPE),
|
|
expected
|
|
)
|
|
|
|
|
|
def test_rasterize_multipolygon_no_hole():
|
|
"""
|
|
Make sure that bug reported in
|
|
https://github.com/rasterio/rasterio/issues/1253
|
|
does not recur. MultiPolygons are flattened to individual parts,
|
|
and should result in no holes where parts overlap.
|
|
"""
|
|
|
|
poly1 = (((0, 0), (0, 5), (5, 5), (5, 0), (0, 0)),)
|
|
poly2 = (((2, 2), (2, 7), (7, 7), (7, 2), (2, 2)),)
|
|
|
|
polys = [{'type': 'Polygon', 'coordinates': poly1},
|
|
{'type': 'Polygon', 'coordinates': poly2}]
|
|
|
|
multipoly = {'type': 'MultiPolygon', 'coordinates': [poly1, poly2]}
|
|
|
|
expected = rasterize(polys, out_shape=DEFAULT_SHAPE)
|
|
|
|
assert np.array_equal(
|
|
rasterize([multipoly], out_shape=DEFAULT_SHAPE),
|
|
expected
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"input",
|
|
[
|
|
[{"type"}],
|
|
[{"type": "Invalid"}],
|
|
[{"type": "Point"}],
|
|
[{"type": "Point", "coordinates": []}],
|
|
[{"type": "GeometryCollection", "geometries": []}],
|
|
],
|
|
)
|
|
def test_rasterize_invalid_geom(input):
|
|
"""Invalid GeoJSON should be skipped with a warning."""
|
|
with pytest.warns(ShapeSkipWarning):
|
|
out = rasterize(input, out_shape=DEFAULT_SHAPE)
|
|
|
|
assert out.shape == DEFAULT_SHAPE
|
|
assert np.all(out == 0)
|
|
|
|
|
|
def test_rasterize_skip_only_invalid_geom(geojson_polygon, basic_image_2x2):
|
|
"""Rasterize operation should succeed for at least one valid geometry."""
|
|
with pytest.warns(ShapeSkipWarning, match="Invalid or empty shape"):
|
|
out = rasterize(
|
|
[geojson_polygon, {"type": "Polygon", "coordinates": []}],
|
|
out_shape=DEFAULT_SHAPE,
|
|
)
|
|
|
|
assert np.array_equal(out, basic_image_2x2)
|
|
|
|
|
|
def test_rasterize_out_image(basic_geometry, basic_image_2x2):
|
|
"""Rasterize operation should succeed for an out image."""
|
|
out = np.zeros(DEFAULT_SHAPE)
|
|
rasterize([basic_geometry], out=out)
|
|
assert np.array_equal(basic_image_2x2, out)
|
|
|
|
|
|
def test_rasterize_unsupported_dtype(basic_geometry):
|
|
"""A non-supported data type for out should raise an exception."""
|
|
out = np.zeros(DEFAULT_SHAPE, dtype=np.float16)
|
|
with pytest.raises(ValueError):
|
|
rasterize([basic_geometry], out=out)
|
|
|
|
|
|
@pytest.mark.xfail(reason="shape values are always unsafely cast to the given dtype.")
|
|
def test_rasterize_shapes_out_dtype_mismatch(basic_geometry):
|
|
"""Shape values must be able to fit in data type for out."""
|
|
out = np.zeros(DEFAULT_SHAPE, dtype=np.uint8)
|
|
with pytest.raises(ValueError):
|
|
rasterize([(basic_geometry, 10000000)], out=out)
|
|
|
|
|
|
def test_rasterize_missing_out(basic_geometry):
|
|
"""If both out and out_shape are missing, should raise exception."""
|
|
with pytest.raises(ValueError):
|
|
rasterize([basic_geometry], out=None, out_shape=None)
|
|
|
|
|
|
def test_rasterize_missing_shapes():
|
|
"""Shapes are not required for this operation."""
|
|
out = rasterize([], out_shape=DEFAULT_SHAPE)
|
|
assert out.shape == DEFAULT_SHAPE
|
|
assert np.all(out == 0)
|
|
|
|
|
|
def test_rasterize_invalid_shapes_skip():
|
|
"""Invalid shapes can be skipped with a warning, the default."""
|
|
with pytest.warns(ShapeSkipWarning):
|
|
rasterize([{'foo': 'bar'}], out_shape=DEFAULT_SHAPE)
|
|
|
|
|
|
def test_rasterize_invalid_shapes_no_skip():
|
|
"""Invalid shapes can raise an exception rather than be skipped."""
|
|
with pytest.raises(ValueError):
|
|
rasterize([{'foo': 'bar'}], out_shape=DEFAULT_SHAPE, skip_invalid=False)
|
|
|
|
|
|
@pytest.mark.parametrize("shape", [(1, 10, 10), (10,)])
|
|
def test_rasterize_invalid_out_shape(basic_geometry, shape):
|
|
"""output array shape must be 2D."""
|
|
with pytest.raises(ValueError, match="Invalid out_shape"):
|
|
rasterize([basic_geometry], out_shape=shape)
|
|
|
|
with pytest.raises(ValueError) as ex:
|
|
rasterize([basic_geometry], out_shape=(10,))
|
|
assert 'Invalid out_shape' in str(ex.value)
|
|
|
|
|
|
@pytest.mark.parametrize("shape", [(0, 0), (1, 0), (0, 1)])
|
|
def test_rasterize_invalid_out_extent(basic_geometry, shape):
|
|
"""output array shape must have nonzero extent."""
|
|
with pytest.raises(ValueError, match="must be > 0"):
|
|
rasterize([basic_geometry], out_shape=shape)
|
|
|
|
|
|
def test_rasterize_default_value(basic_geometry, basic_image_2x2):
|
|
"""All shapes should rasterize to the default value."""
|
|
default_value = 2
|
|
truth = basic_image_2x2 * default_value
|
|
|
|
assert np.array_equal(
|
|
truth,
|
|
rasterize(
|
|
[basic_geometry], out_shape=DEFAULT_SHAPE,
|
|
default_value=default_value
|
|
)
|
|
)
|
|
|
|
|
|
def test_rasterize_default_value_for_none(basic_geometry, basic_image_2x2):
|
|
"""All shapes should rasterize to the default value."""
|
|
assert np.all(
|
|
rasterize([(basic_geometry, None)], out_shape=DEFAULT_SHAPE, fill=2) == 2
|
|
)
|
|
|
|
|
|
def test_rasterize_int64_default_value(basic_geometry):
|
|
"""A default value that requires an int64 succeeds for GDAL >= 3.5."""
|
|
rasterize([basic_geometry], out_shape=DEFAULT_SHAPE, default_value=1000000000000)
|
|
|
|
|
|
def test_rasterize_fill_value(basic_geometry, basic_image_2x2):
|
|
"""All pixels not covered by shapes should be given fill value."""
|
|
default_value = 2
|
|
assert np.array_equal(
|
|
basic_image_2x2 + 1,
|
|
rasterize(
|
|
[basic_geometry], out_shape=DEFAULT_SHAPE, fill=1,
|
|
default_value=default_value
|
|
)
|
|
)
|
|
|
|
|
|
def test_rasterize_invalid_fill_value(basic_geometry):
|
|
"""Fill arg no longer determines data type."""
|
|
out = rasterize(
|
|
[basic_geometry], out_shape=DEFAULT_SHAPE, fill=0.5, default_value=2
|
|
)
|
|
assert out.dtype.kind != "f"
|
|
|
|
|
|
def test_rasterize_all_touched(basic_geometry, basic_image):
|
|
assert np.array_equal(
|
|
basic_image,
|
|
rasterize(
|
|
[basic_geometry], out_shape=DEFAULT_SHAPE, all_touched=True
|
|
)
|
|
)
|
|
|
|
|
|
def test_rasterize_merge_alg_add(basic_geometry, basic_image_2x2x2):
|
|
"""
|
|
Rasterizing two times the basic_geometry with the "add" merging
|
|
option should output the shape with the value 2
|
|
"""
|
|
with rasterio.Env():
|
|
assert np.array_equal(
|
|
basic_image_2x2x2,
|
|
rasterize(
|
|
[basic_geometry, basic_geometry], merge_alg=MergeAlg.add,
|
|
out_shape=DEFAULT_SHAPE)
|
|
)
|
|
|
|
|
|
def test_rasterize_value(basic_geometry, basic_image_2x2):
|
|
"""
|
|
All shapes should rasterize to the value passed in a tuple alongside
|
|
each shape
|
|
"""
|
|
value = 5
|
|
assert np.array_equal(
|
|
basic_image_2x2 * value,
|
|
rasterize(
|
|
[(basic_geometry, value)], out_shape=DEFAULT_SHAPE
|
|
)
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"dtype",
|
|
[
|
|
"float16",
|
|
pytest.param(
|
|
"int8",
|
|
marks=pytest.mark.skipif(
|
|
gdal_version.at_least("3.7"), reason="int8 supported at GDAL 3.7"
|
|
),
|
|
),
|
|
],
|
|
)
|
|
def test_rasterize_unsupported_dtype(basic_geometry, dtype):
|
|
"""Unsupported types should all raise exceptions."""
|
|
with pytest.raises(ValueError):
|
|
rasterize([basic_geometry], out_shape=DEFAULT_SHAPE, dtype=dtype)
|
|
|
|
|
|
def test_rasterize_geometries_symmetric():
|
|
"""Make sure that rasterize is symmetric with shapes."""
|
|
transform = (1.0, 0.0, 0.0, 0.0, -1.0, 0.0)
|
|
truth = np.zeros(DEFAULT_SHAPE, dtype=rasterio.ubyte)
|
|
truth[2:5, 2:5] = 1
|
|
s = shapes(truth, transform=transform)
|
|
result = rasterize(s, out_shape=DEFAULT_SHAPE, transform=transform)
|
|
assert np.array_equal(result, truth)
|
|
|
|
|
|
def test_rasterize_internal_driver_manager(basic_geometry):
|
|
"""Rasterize should work without explicitly calling driver manager."""
|
|
assert rasterize([basic_geometry], out_shape=DEFAULT_SHAPE).sum() == 4
|
|
|
|
|
|
def test_rasterize_geo_interface_2(geojson_polygon):
|
|
"""Objects that implement the geo interface should rasterize properly"""
|
|
|
|
class GeoObj:
|
|
@property
|
|
def __geo_interface__(self):
|
|
return geojson_polygon
|
|
|
|
assert rasterize([GeoObj()], out_shape=DEFAULT_SHAPE).sum() == 4
|
|
|
|
|
|
def test_rasterize__numpy_coordinates__fail():
|
|
# https://github.com/rasterio/rasterio/issues/2385
|
|
shapes = [
|
|
(
|
|
{
|
|
"type": "LineString",
|
|
"coordinates": np.array(
|
|
[
|
|
[425596.0123443, 4932971.35636043],
|
|
[425598.03434254, 4932966.09916503],
|
|
[425592.56573176, 4932963.99585319],
|
|
[425590.54373353, 4932969.2530486],
|
|
[425596.0123443, 4932971.35636043],
|
|
]
|
|
),
|
|
},
|
|
2,
|
|
),
|
|
(
|
|
{
|
|
"type": "LineString",
|
|
"coordinates": np.array(
|
|
[
|
|
[425582.9243515, 4932973.24623693],
|
|
[425592.85588065, 4932951.94800393],
|
|
[425584.24595668, 4932947.93313045],
|
|
[425574.31442752, 4932969.23136344],
|
|
[425582.9243515, 4932973.24623693],
|
|
]
|
|
),
|
|
},
|
|
2,
|
|
),
|
|
]
|
|
out = rasterio.features.rasterize(shapes=shapes, out_shape=(100, 100))
|
|
assert out.shape == (100, 100)
|
|
# will fail and be filled with 0
|
|
assert (out == 0).all()
|
|
|
|
|
|
def test_shapes(basic_image):
|
|
"""Test creation of shapes from pixel values."""
|
|
shapely = pytest.importorskip("shapely", reason="Test requires shapely.")
|
|
results = list(shapes(basic_image))
|
|
|
|
assert len(results) == 2
|
|
|
|
shape, value = results[0]
|
|
assert shape == {
|
|
'coordinates': [
|
|
[(2, 2), (2, 5), (5, 5), (5, 2), (2, 2)]
|
|
],
|
|
'type': 'Polygon'
|
|
}
|
|
assert value == 1
|
|
|
|
shape, value = results[1]
|
|
assert shapely.geometry.shape(shape).area == 91.0
|
|
assert value == 0
|
|
|
|
|
|
def test_shapes_2509(basic_image):
|
|
"""Test creation of shapes from pixel values, issue #2509."""
|
|
shapely = pytest.importorskip("shapely", reason="Test requires shapely.")
|
|
image_with_strides = np.pad(basic_image, 1)[1:-1, 1:-1]
|
|
np.testing.assert_array_equal(basic_image, image_with_strides)
|
|
assert image_with_strides.__array_interface__["strides"] is not None
|
|
|
|
results = list(shapes(image_with_strides))
|
|
|
|
assert len(results) == 2
|
|
|
|
shape, value = results[0]
|
|
assert shape == {
|
|
'coordinates': [
|
|
[(2, 2), (2, 5), (5, 5), (5, 2), (2, 2)]
|
|
],
|
|
'type': 'Polygon'
|
|
}
|
|
assert value == 1
|
|
|
|
shape, value = results[1]
|
|
assert shapely.geometry.shape(shape).area == 91.0
|
|
assert value == 0
|
|
|
|
|
|
def test_shapes_band(pixelated_image, pixelated_image_file):
|
|
"""Shapes from a band should match shapes from an array."""
|
|
truth = list(shapes(pixelated_image))
|
|
|
|
with rasterio.open(pixelated_image_file) as src:
|
|
band = rasterio.band(src, 1)
|
|
assert truth == list(shapes(band))
|
|
|
|
# Mask band should function, but will mask out some results
|
|
assert truth[0] == list(shapes(band, mask=band))[0]
|
|
|
|
|
|
def test_shapes_connectivity_rook(diagonal_image):
|
|
"""
|
|
Diagonals are not connected, so there will be 1 feature per pixel plus
|
|
background.
|
|
"""
|
|
assert len(list(shapes(diagonal_image, connectivity=4))) == 12
|
|
|
|
|
|
def test_shapes_connectivity_queen(diagonal_image):
|
|
"""
|
|
Diagonals are connected, so there will be 1 feature for all pixels plus
|
|
background.
|
|
"""
|
|
assert len(list(shapes(diagonal_image, connectivity=8))) == 2
|
|
|
|
|
|
def test_shapes_connectivity_invalid(diagonal_image):
|
|
"""Invalid connectivity should raise exception."""
|
|
with pytest.raises(ValueError):
|
|
assert next(shapes(diagonal_image, connectivity=12))
|
|
|
|
|
|
def test_shapes_mask(basic_image):
|
|
"""Only pixels not masked out should be converted to features."""
|
|
mask = np.ones(basic_image.shape, dtype=rasterio.bool_)
|
|
mask[4:5, 4:5] = False
|
|
|
|
results = list(shapes(basic_image, mask=mask))
|
|
|
|
assert len(results) == 2
|
|
|
|
shape, value = results[0]
|
|
assert shape == {
|
|
'coordinates': [
|
|
[(2, 2), (2, 5), (4, 5), (4, 4), (5, 4), (5, 2), (2, 2)]
|
|
],
|
|
'type': 'Polygon'
|
|
}
|
|
assert value == 1
|
|
|
|
|
|
def test_shapes_masked_array(basic_image):
|
|
"""Only pixels not masked out should be converted to features."""
|
|
mask = np.full(basic_image.shape, False, dtype=rasterio.bool_)
|
|
mask[4:5, 4:5] = True
|
|
|
|
results = list(shapes(np.ma.masked_array(basic_image, mask=mask)))
|
|
|
|
assert len(results) == 2
|
|
|
|
shape, value = results[0]
|
|
assert shape == {
|
|
'coordinates': [
|
|
[(2, 2), (2, 5), (4, 5), (4, 4), (5, 4), (5, 2), (2, 2)]
|
|
],
|
|
'type': 'Polygon'
|
|
}
|
|
assert value == 1
|
|
|
|
|
|
def test_shapes_blank_mask(basic_image):
|
|
"""Mask is blank so results should mask shapes without mask."""
|
|
assert np.array_equal(
|
|
list(shapes(
|
|
basic_image,
|
|
mask=np.ones(basic_image.shape, dtype=rasterio.bool_))
|
|
),
|
|
list(shapes(basic_image))
|
|
)
|
|
|
|
|
|
def test_shapes_invalid_mask_shape(basic_image):
|
|
"""A mask that is the wrong shape should fail."""
|
|
with pytest.raises(ValueError):
|
|
next(shapes(
|
|
basic_image,
|
|
mask=np.ones(
|
|
(basic_image.shape[0] + 10, basic_image.shape[1] + 10),
|
|
dtype=rasterio.bool_
|
|
)
|
|
))
|
|
|
|
|
|
def test_shapes_invalid_mask_dtype(basic_image):
|
|
"""A mask that is the wrong dtype should fail."""
|
|
for dtype in ('int8', 'int16', 'int32'):
|
|
with pytest.raises(ValueError):
|
|
next(shapes(
|
|
basic_image,
|
|
mask=np.ones(basic_image.shape, dtype=dtype)
|
|
))
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"dtype, test_value",
|
|
[
|
|
pytest.param("int8", -127, marks=requires_gdal37),
|
|
("int16", -32768),
|
|
("int32", -2147483648),
|
|
("uint8", 255),
|
|
("uint16", 65535),
|
|
("float32", 1.434532),
|
|
("float64", 1.434532),
|
|
],
|
|
)
|
|
def test_shapes_supported_dtypes(basic_image, dtype, test_value):
|
|
"""Supported data types should return valid results."""
|
|
shape, value = next(shapes(basic_image.astype(dtype) * test_value))
|
|
assert np.allclose(value, test_value)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"dtype, test_value",
|
|
[
|
|
pytest.param("int8", -127, marks=requires_gdal_lt_37),
|
|
("uint32", 4294967295),
|
|
("int64", 20439845334323),
|
|
("float16", -9343.232),
|
|
],
|
|
)
|
|
def test_shapes_unsupported_dtypes(basic_image, dtype, test_value):
|
|
"""Unsupported data types should raise exceptions."""
|
|
with pytest.raises(ValueError):
|
|
next(shapes(basic_image.astype(dtype) * test_value))
|
|
|
|
|
|
def test_shapes_internal_driver_manager(basic_image):
|
|
"""Shapes should work without explicitly calling driver manager."""
|
|
assert next(shapes(basic_image))[0]['type'] == 'Polygon'
|
|
|
|
|
|
def test_sieve_small(basic_image, pixelated_image):
|
|
"""
|
|
Setting the size smaller than or equal to the size of the feature in the
|
|
image should not change the image.
|
|
"""
|
|
assert np.array_equal(
|
|
basic_image,
|
|
sieve(pixelated_image, basic_image.sum())
|
|
)
|
|
|
|
|
|
def test_sieve_large(basic_image):
|
|
"""
|
|
Setting the size larger than size of feature should leave us an empty image.
|
|
"""
|
|
assert not np.any(sieve(basic_image, basic_image.sum() + 1))
|
|
|
|
|
|
def test_sieve_invalid_size(basic_image):
|
|
for invalid_size in (0, 45.1234, basic_image.size + 1):
|
|
with pytest.raises(ValueError):
|
|
sieve(basic_image, invalid_size)
|
|
|
|
|
|
def test_sieve_connectivity_rook(diagonal_image):
|
|
"""Diagonals are not connected, so feature is removed."""
|
|
assert not np.any(
|
|
sieve(diagonal_image, diagonal_image.sum(), connectivity=4)
|
|
)
|
|
|
|
|
|
def test_sieve_connectivity_queen(diagonal_image):
|
|
"""Diagonals are connected, so feature is retained."""
|
|
assert np.array_equal(
|
|
diagonal_image,
|
|
sieve(diagonal_image, diagonal_image.sum(), connectivity=8)
|
|
)
|
|
|
|
|
|
def test_sieve_connectivity_invalid(basic_image):
|
|
with pytest.raises(ValueError):
|
|
sieve(basic_image, 54, connectivity=12)
|
|
|
|
|
|
def test_sieve_out(basic_image):
|
|
"""Output array passed in should match the returned array."""
|
|
output = np.zeros_like(basic_image)
|
|
output[1:3, 1:3] = 5
|
|
sieved_image = sieve(basic_image, basic_image.sum(), out=output)
|
|
assert np.array_equal(basic_image, sieved_image)
|
|
assert np.array_equal(output, sieved_image)
|
|
|
|
|
|
def test_sieve_invalid_out(basic_image):
|
|
"""Output with different dtype or shape should fail."""
|
|
with pytest.raises(ValueError):
|
|
sieve(
|
|
basic_image, basic_image.sum(),
|
|
out=np.zeros(basic_image.shape, dtype=rasterio.int32)
|
|
)
|
|
|
|
with pytest.raises(ValueError):
|
|
sieve(
|
|
basic_image, basic_image.sum(),
|
|
out=np.zeros(
|
|
(basic_image.shape[0] + 10, basic_image.shape[1] + 10),
|
|
dtype=rasterio.ubyte
|
|
)
|
|
)
|
|
|
|
|
|
def test_sieve_mask(basic_image):
|
|
"""
|
|
Only areas within the overlap of mask and input will be kept, so long
|
|
as mask is a bool or uint8 dtype.
|
|
"""
|
|
mask = np.ones(basic_image.shape, dtype=rasterio.bool_)
|
|
mask[4:5, 4:5] = False
|
|
truth = basic_image * np.invert(mask)
|
|
|
|
sieved_image = sieve(basic_image, basic_image.sum(), mask=mask)
|
|
assert sieved_image.sum() > 0
|
|
|
|
assert np.array_equal(
|
|
truth,
|
|
sieved_image
|
|
)
|
|
|
|
assert np.array_equal(
|
|
truth.astype(rasterio.uint8),
|
|
sieved_image
|
|
)
|
|
|
|
|
|
def test_sieve_blank_mask(basic_image):
|
|
"""A blank mask should have no effect."""
|
|
mask = np.ones(basic_image.shape, dtype=rasterio.bool_)
|
|
assert np.array_equal(
|
|
basic_image,
|
|
sieve(basic_image, basic_image.sum(), mask=mask)
|
|
)
|
|
|
|
|
|
@pytest.mark.xfail(reason="Upstream bug in GDAL, see #3074.")
|
|
def test_sieve_all_masked(basic_image):
|
|
"""A blank mask should have no effect."""
|
|
mask = np.full(basic_image.shape, False)
|
|
# mask[-1, -1] = True
|
|
sieved = sieve(basic_image, basic_image.sum(), mask=mask)
|
|
assert np.array_equal(
|
|
basic_image,
|
|
sieved
|
|
)
|
|
|
|
|
|
def test_sieve_invalid_mask_shape(basic_image):
|
|
"""A mask that is the wrong shape should fail."""
|
|
with pytest.raises(ValueError):
|
|
sieve(
|
|
basic_image, basic_image.sum(),
|
|
mask=np.ones(
|
|
(basic_image.shape[0] + 10, basic_image.shape[1] + 10),
|
|
dtype=rasterio.bool_
|
|
)
|
|
)
|
|
|
|
|
|
def test_sieve_invalid_mask_dtype(basic_image):
|
|
"""A mask that is the wrong dtype should fail."""
|
|
for dtype in ('int8', 'int16', 'int32'):
|
|
with pytest.raises(ValueError):
|
|
sieve(
|
|
basic_image, basic_image.sum(),
|
|
mask=np.ones(basic_image.shape, dtype=dtype)
|
|
)
|
|
|
|
|
|
def test_sieve_supported_dtypes(basic_image):
|
|
"""Supported data types should return valid results."""
|
|
supported_types = (
|
|
('int16', -32768),
|
|
('int32', -2147483648),
|
|
('uint8', 255),
|
|
('uint16', 65535)
|
|
)
|
|
|
|
for dtype, test_value in supported_types:
|
|
truth = (basic_image).astype(dtype) * test_value
|
|
sieved_image = sieve(truth, basic_image.sum())
|
|
assert np.array_equal(truth, sieved_image)
|
|
assert np.dtype(sieved_image.dtype) == np.dtype(dtype)
|
|
|
|
|
|
def test_sieve_unsupported_dtypes(basic_image):
|
|
"""Unsupported data types should raise exceptions."""
|
|
unsupported_types = (
|
|
('int8', -127),
|
|
('uint32', 4294967295),
|
|
('int64', 20439845334323),
|
|
('float16', -9343.232),
|
|
('float32', 1.434532),
|
|
('float64', -98332.133422114)
|
|
)
|
|
|
|
for dtype, test_value in unsupported_types:
|
|
with pytest.raises(ValueError):
|
|
sieve(
|
|
(basic_image).astype(dtype) * test_value,
|
|
basic_image.sum()
|
|
)
|
|
|
|
|
|
def test_sieve_band(pixelated_image, pixelated_image_file):
|
|
"""Sieving a band from a raster file should match sieve of array."""
|
|
|
|
truth = sieve(pixelated_image, 9)
|
|
|
|
with rasterio.open(pixelated_image_file) as src:
|
|
band = rasterio.band(src, 1)
|
|
assert np.array_equal(truth, sieve(band, 9))
|
|
|
|
# Mask band should also work but will be a no-op
|
|
assert np.array_equal(
|
|
pixelated_image,
|
|
sieve(band, 9, mask=band)
|
|
)
|
|
|
|
|
|
def test_sieve_internal_driver_manager(capfd, basic_image, pixelated_image):
|
|
"""Sieve should work without explicitly calling driver manager."""
|
|
assert np.array_equal(
|
|
basic_image,
|
|
sieve(pixelated_image, basic_image.sum())
|
|
)
|
|
|
|
|
|
def test_zz_no_dataset_leaks(capfd):
|
|
with rasterio.Env() as env:
|
|
env._dump_open_datasets()
|
|
captured = capfd.readouterr()
|
|
assert not captured.err
|
|
|
|
|
|
def test_sieve_bands(pixelated_image, pixelated_image_file):
|
|
"""Verify fix for gh-2782."""
|
|
truth = sieve(pixelated_image, 9)
|
|
|
|
with rasterio.open(pixelated_image_file) as src:
|
|
assert np.array_equal(truth, sieve(rasterio.band(src, [1]), 9))
|
|
|
|
# Mask band should also work but will be a no-op
|
|
assert np.array_equal(
|
|
pixelated_image,
|
|
sieve(rasterio.band(src, [1]), 9, mask=rasterio.band(src, 1))
|
|
)
|
|
|
|
|
|
def test_sieve_dataset(pixelated_image, pixelated_image_file):
|
|
"""Verify fix for gh-2782."""
|
|
truth = sieve(pixelated_image, 9)
|
|
|
|
with rasterio.open(pixelated_image_file) as src:
|
|
assert np.array_equal(truth, sieve(src, 9))
|
|
|
|
# Mask band should also work but will be a no-op
|
|
assert np.array_equal(
|
|
pixelated_image,
|
|
sieve(src, 9, mask=rasterio.band(src, 1))
|
|
)
|