mirror of
https://github.com/rasterio/rasterio.git
synced 2025-12-08 17:36:12 +00:00
* Handles mixed type lists. * Use asanyarray to be friendly to array subclasses like MaskedArray.
166 lines
4.5 KiB
Python
166 lines
4.5 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
from .conftest import gdal_version
|
|
|
|
import rasterio
|
|
from rasterio import (
|
|
ubyte,
|
|
uint8,
|
|
uint16,
|
|
uint32,
|
|
uint64,
|
|
int8,
|
|
int16,
|
|
int32,
|
|
int64,
|
|
float32,
|
|
float64,
|
|
complex_,
|
|
complex_int16,
|
|
)
|
|
from rasterio.dtypes import (
|
|
_gdal_typename,
|
|
is_ndarray,
|
|
check_dtype,
|
|
get_minimum_dtype,
|
|
can_cast_dtype,
|
|
validate_dtype,
|
|
_is_complex_int,
|
|
_getnpdtype,
|
|
_get_gdal_dtype,
|
|
)
|
|
|
|
|
|
def test_is_ndarray():
|
|
assert is_ndarray(np.zeros((1,)))
|
|
assert not is_ndarray([0])
|
|
assert not is_ndarray((0,))
|
|
|
|
|
|
def test_np_dt_uint8():
|
|
assert check_dtype(np.uint8)
|
|
|
|
|
|
def test_dt_ubyte():
|
|
assert check_dtype(ubyte)
|
|
|
|
|
|
def test_check_dtype_invalid():
|
|
assert not check_dtype('foo')
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("dtype", "name"),
|
|
[
|
|
(ubyte, "Byte"),
|
|
(np.uint8, "Byte"),
|
|
(np.uint16, "UInt16"),
|
|
("uint8", "Byte"),
|
|
("complex_int16", "CInt16"),
|
|
(complex_int16, "CInt16"),
|
|
],
|
|
)
|
|
def test_gdal_name(dtype, name):
|
|
assert _gdal_typename(dtype) == name
|
|
|
|
|
|
def test_get_minimum_dtype():
|
|
assert get_minimum_dtype([0, 1]) == uint8
|
|
assert get_minimum_dtype([0, 1000]) == uint16
|
|
assert get_minimum_dtype([0, 100000]) == uint32
|
|
assert get_minimum_dtype([-1, 0, 1]) == int8
|
|
assert get_minimum_dtype([-1, 0, 128]) == int16
|
|
assert get_minimum_dtype([-1, 0, 100000]) == int32
|
|
assert get_minimum_dtype([-1.5, 0, 1.5]) == float32
|
|
assert get_minimum_dtype([-1.5e+100, 0, 1.5e+100]) == float64
|
|
|
|
assert get_minimum_dtype(np.array([0, 1], dtype=np.uint)) == uint8
|
|
assert get_minimum_dtype(np.array([0, 1000], dtype=np.uint)) == uint16
|
|
assert get_minimum_dtype(np.array([0, 100000], dtype=np.uint)) == uint32
|
|
assert get_minimum_dtype(np.array([-1, 0, 1], dtype=int)) == int8
|
|
assert get_minimum_dtype(np.array([-1, 0, 128], dtype=int)) == int16
|
|
assert get_minimum_dtype(np.array([-1, 0, 100000], dtype=int)) == int32
|
|
assert get_minimum_dtype(np.array([-1.5, 0, 1.5], dtype=np.float64)) == float32
|
|
|
|
# Mixed type list where min/max are same type
|
|
assert get_minimum_dtype([0, 1.5, 5]) == float32
|
|
|
|
|
|
def test_get_minimum_dtype__int64():
|
|
if gdal_version.at_least("3.5"):
|
|
assert get_minimum_dtype([-1, 0, 2147483648]) == int64
|
|
else:
|
|
with pytest.raises(ValueError, match="Values out of range for supported dtypes"):
|
|
get_minimum_dtype([-1, 0, 2147483648])
|
|
|
|
|
|
def test_get_minimum_dtype__uint64():
|
|
if gdal_version.at_least("3.5"):
|
|
assert get_minimum_dtype([0, 4294967296]) == uint64
|
|
else:
|
|
with pytest.raises(ValueError, match="Values out of range for supported dtypes"):
|
|
get_minimum_dtype([0, 4294967296])
|
|
|
|
|
|
def test_can_cast_dtype():
|
|
assert can_cast_dtype((1, 2, 3), np.uint8)
|
|
assert can_cast_dtype(np.array([1, 2, 3]), np.uint8)
|
|
assert can_cast_dtype(np.array([1, 2, 3], dtype=np.uint8), np.uint8)
|
|
assert can_cast_dtype(np.array([1, 2, 3]), np.float32)
|
|
assert can_cast_dtype(np.array([1.4, 2.1, 3.65]), np.float32)
|
|
assert not can_cast_dtype(np.array([1.4, 2.1, 3.65]), np.uint8)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", ["float64", "float32"])
|
|
def test_can_cast_dtype_nan(dtype):
|
|
assert can_cast_dtype([np.nan], dtype)
|
|
|
|
|
|
@pytest.mark.parametrize("dtype", ["uint8", "uint16", "uint32", "int32"])
|
|
def test_cant_cast_dtype_nan(dtype):
|
|
assert not can_cast_dtype([np.nan], dtype)
|
|
|
|
|
|
def test_validate_dtype():
|
|
assert validate_dtype([1, 2, 3], ('uint8', 'uint16'))
|
|
assert validate_dtype(np.array([1, 2, 3]), ('uint8', 'uint16'))
|
|
assert validate_dtype(np.array([1.4, 2.1, 3.65]), ('float32',))
|
|
assert not validate_dtype(np.array([1.4, 2.1, 3.65]), ('uint8',))
|
|
|
|
|
|
def test_complex(tmpdir):
|
|
name = str(tmpdir.join("complex.tif"))
|
|
arr1 = np.ones((2, 2), dtype=complex_)
|
|
profile = dict(driver='GTiff', width=2, height=2, count=1, dtype=complex_)
|
|
|
|
with rasterio.open(name, 'w', **profile) as dst:
|
|
dst.write(arr1, 1)
|
|
|
|
with rasterio.open(name) as src:
|
|
arr2 = src.read(1)
|
|
|
|
assert np.array_equal(arr1, arr2)
|
|
|
|
|
|
def test_is_complex_int():
|
|
assert _is_complex_int("complex_int16")
|
|
|
|
|
|
def test_not_is_complex_int():
|
|
assert not _is_complex_int("complex")
|
|
|
|
|
|
def test_get_npdtype():
|
|
npdtype = _getnpdtype("complex_int16")
|
|
assert npdtype == np.complex64
|
|
assert npdtype.kind == "c"
|
|
|
|
|
|
def test__get_gdal_dtype__int64():
|
|
if gdal_version.at_least("3.5"):
|
|
assert _get_gdal_dtype("int64") == 12
|
|
else:
|
|
with pytest.raises(TypeError, match="Unsupported data type"):
|
|
_get_gdal_dtype("int64")
|