mirror of
https://github.com/rasterio/rasterio.git
synced 2025-12-08 17:36:12 +00:00
1025 lines
29 KiB
Python
1025 lines
29 KiB
Python
from copy import deepcopy
|
|
import logging
|
|
import sys
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from affine import Affine
|
|
|
|
import rasterio
|
|
from rasterio.errors import WindowError
|
|
from rasterio.features import (
|
|
bounds, geometry_mask, geometry_window, is_valid_geom, rasterize, sieve,
|
|
shapes)
|
|
|
|
|
|
DEFAULT_SHAPE = (10, 10)
|
|
|
|
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG)
|
|
|
|
|
|
def test_bounds_point():
|
|
g = {'type': 'Point', 'coordinates': [10, 10]}
|
|
assert bounds(g) == (10, 10, 10, 10)
|
|
|
|
|
|
def test_bounds_line():
|
|
g = {'type': 'LineString', 'coordinates': [[0, 0], [10, 10]]}
|
|
assert bounds(g) == (0, 0, 10, 10)
|
|
|
|
|
|
def test_bounds_polygon():
|
|
g = {'type': 'Polygon', 'coordinates': [[[0, 0], [10, 10], [10, 0]]]}
|
|
assert bounds(g) == (0, 0, 10, 10)
|
|
|
|
|
|
def test_bounds_z():
|
|
g = {'type': 'Point', 'coordinates': [10, 10, 10]}
|
|
assert bounds(g) == (10, 10, 10, 10)
|
|
|
|
|
|
def test_bounds_invalid_obj():
|
|
with pytest.raises(KeyError):
|
|
bounds({'type': 'bogus', 'not_coordinates': []})
|
|
|
|
|
|
def test_feature_collection(basic_featurecollection):
|
|
fc = basic_featurecollection
|
|
assert bounds(fc) == bounds(fc['features'][0]) == (2, 2, 4.25, 4.25)
|
|
|
|
|
|
def test_bounds_existing_bbox(basic_featurecollection):
|
|
"""Test with existing bbox in geojson.
|
|
|
|
Similar to that produced by rasterio. Values specifically modified here
|
|
for testing, bboxes are not valid as written.
|
|
"""
|
|
fc = basic_featurecollection
|
|
fc['bbox'] = [0, 10, 10, 20]
|
|
fc['features'][0]['bbox'] = [0, 100, 10, 200]
|
|
|
|
assert bounds(fc['features'][0]) == (0, 100, 10, 200)
|
|
assert bounds(fc) == (0, 10, 10, 20)
|
|
|
|
|
|
def test_geometry_mask(basic_geometry, basic_image_2x2):
|
|
assert np.array_equal(
|
|
basic_image_2x2 == 0,
|
|
geometry_mask(
|
|
[basic_geometry],
|
|
out_shape=DEFAULT_SHAPE,
|
|
transform=Affine.identity()
|
|
)
|
|
)
|
|
|
|
|
|
def test_geometry_mask_invert(basic_geometry, basic_image_2x2):
|
|
assert np.array_equal(
|
|
basic_image_2x2,
|
|
geometry_mask(
|
|
[basic_geometry],
|
|
out_shape=DEFAULT_SHAPE,
|
|
transform=Affine.identity(),
|
|
invert=True
|
|
)
|
|
)
|
|
|
|
def test_geometry_invalid_geom():
|
|
"""An invalid geometry should fail"""
|
|
|
|
invalid_geoms = [
|
|
{'type': 'Invalid'}, # wrong type
|
|
{'type': 'Point'}, # missing coordinates
|
|
{'type': 'Point', 'coordinates': []} # empty coordinates
|
|
]
|
|
|
|
for geom in invalid_geoms:
|
|
with pytest.raises(ValueError) as exc_info:
|
|
geometry_mask(
|
|
[geom],
|
|
out_shape=DEFAULT_SHAPE,
|
|
transform=Affine.identity())
|
|
|
|
assert 'Invalid geometry' in exc_info.value.args[0]
|
|
|
|
|
|
def test_geometry_mask_invalid_shape(basic_geometry):
|
|
"""A width==0 or height==0 should fail with ValueError"""
|
|
|
|
for shape in [(0, 0), (1, 0), (0, 1)]:
|
|
with pytest.raises(ValueError) as exc_info:
|
|
geometry_mask(
|
|
[basic_geometry],
|
|
out_shape=shape,
|
|
transform=Affine.identity())
|
|
|
|
assert 'must be > 0' in exc_info.value.args[0]
|
|
|
|
|
|
def test_geometry_mask_no_transform(basic_geometry):
|
|
with pytest.raises(TypeError) as exc_info:
|
|
geometry_mask(
|
|
[basic_geometry],
|
|
out_shape=DEFAULT_SHAPE,
|
|
transform=None)
|
|
|
|
|
|
def test_geometry_window(basic_image_file, basic_geometry):
|
|
with rasterio.open(basic_image_file) as src:
|
|
window = geometry_window(src, [basic_geometry], north_up=False)
|
|
assert window.flatten() == (2, 2, 3, 3)
|
|
|
|
|
|
@pytest.mark.xfail
|
|
# This test is failing due to https://github.com/mapbox/rasterio/issues/1139
|
|
def test_geometry_window_pixel_precision(basic_image_file):
|
|
"""Window offsets should be floor, width and height ceiling"""
|
|
|
|
geom2 = {
|
|
'type': 'Polygon',
|
|
'coordinates': [[
|
|
(1.99999, 2),
|
|
(1.99999, 4.0001), (4.0001, 4.0001), (4.0001, 2),
|
|
(1.99999, 2)
|
|
]]
|
|
}
|
|
|
|
with rasterio.open(basic_image_file) as src:
|
|
window = geometry_window(src, [geom2], north_up=False,
|
|
pixel_precision=6)
|
|
assert window.flatten() == (1, 2, 3, 3)
|
|
|
|
|
|
def test_geometry_window_north_up(path_rgb_byte_tif):
|
|
geometry = {
|
|
'type': 'Polygon',
|
|
'coordinates': [[
|
|
(200000, 2700000),
|
|
(200000, 2750000),
|
|
(250000, 2750000),
|
|
(250000, 2700000),
|
|
(200000, 2700000)
|
|
]]
|
|
}
|
|
|
|
with rasterio.open(path_rgb_byte_tif) as src:
|
|
window = geometry_window(src, [geometry], north_up=True)
|
|
|
|
assert window.flatten() == (326, 256, 167, 167)
|
|
|
|
|
|
def test_geometry_window_pad(basic_image_file, basic_geometry):
|
|
with rasterio.open(basic_image_file) as src:
|
|
window = geometry_window(src, [basic_geometry], north_up=False,
|
|
pad_x=0.5, pad_y=0.5)
|
|
|
|
assert window.flatten() == (1, 1, 4, 4)
|
|
|
|
|
|
def test_geometry_large_shapes(basic_image_file):
|
|
geometry = {
|
|
'type': 'Polygon',
|
|
'coordinates': [[
|
|
(-2000, -2000),
|
|
(-2000, 2000),
|
|
(2000, 2000),
|
|
(2000, -2000),
|
|
(-2000, -2000)
|
|
]]
|
|
}
|
|
|
|
with rasterio.open(basic_image_file) as src:
|
|
window = geometry_window(src, [geometry], north_up=False)
|
|
|
|
assert window.flatten() == (0, 0, src.height, src.width)
|
|
|
|
|
|
def test_geometry_no_overlap(path_rgb_byte_tif, basic_geometry):
|
|
"""Geometries that do not overlap raster raises WindowError"""
|
|
|
|
with rasterio.open(path_rgb_byte_tif) as src:
|
|
with pytest.raises(WindowError):
|
|
geometry_window(src, [basic_geometry], north_up=False)
|
|
|
|
|
|
def test_is_valid_geom_point(geojson_point):
|
|
"""Properly formed GeoJSON Point is valid"""
|
|
assert is_valid_geom(geojson_point)
|
|
|
|
# Empty coordinates are invalid
|
|
geojson_point['coordinates'] = []
|
|
assert not is_valid_geom(geojson_point)
|
|
|
|
|
|
def test_is_valid_geom_multipoint(geojson_multipoint):
|
|
"""Properly formed GeoJSON MultiPoint is valid"""
|
|
assert is_valid_geom(geojson_multipoint)
|
|
|
|
# Empty iterable is invalid
|
|
geom = deepcopy(geojson_multipoint)
|
|
geom['coordinates'] = []
|
|
assert not is_valid_geom(geom)
|
|
|
|
# Empty first coordinate is invalid
|
|
geom = deepcopy(geojson_multipoint)
|
|
geom['coordinates'] = [[]]
|
|
|
|
|
|
def test_is_valid_geom_line(geojson_line):
|
|
"""Properly formed GeoJSON LineString is valid"""
|
|
|
|
assert is_valid_geom(geojson_line)
|
|
|
|
# Empty iterable is invalid
|
|
geom = deepcopy(geojson_line)
|
|
geom['coordinates'] = []
|
|
assert not is_valid_geom(geom)
|
|
|
|
# Empty first coordinate is invalid
|
|
geom = deepcopy(geojson_line)
|
|
geom['coordinates'] = [[]]
|
|
|
|
|
|
def test_is_valid_geom_multiline(geojson_line):
|
|
"""Properly formed GeoJSON MultiLineString is valid"""
|
|
|
|
assert is_valid_geom(geojson_line)
|
|
|
|
# Empty iterables are invalid
|
|
geom = deepcopy(geojson_line)
|
|
geom['coordinates'] = []
|
|
assert not is_valid_geom(geom)
|
|
|
|
geom = deepcopy(geojson_line)
|
|
geom['coordinates'] = [[]]
|
|
assert not is_valid_geom(geom)
|
|
|
|
# Empty first coordinate is invalid
|
|
geom = deepcopy(geojson_line)
|
|
geom['coordinates'] = [[[]]]
|
|
assert not is_valid_geom(geom)
|
|
|
|
|
|
def test_is_valid_geom_polygon(geojson_polygon):
|
|
"""Properly formed GeoJSON Polygon is valid"""
|
|
|
|
assert is_valid_geom(geojson_polygon)
|
|
|
|
# Empty iterables are invalid
|
|
geom = deepcopy(geojson_polygon)
|
|
geom['coordinates'] = []
|
|
assert not is_valid_geom(geom)
|
|
|
|
geom = deepcopy(geojson_polygon)
|
|
geom['coordinates'] = [[]]
|
|
assert not is_valid_geom(geom)
|
|
|
|
# Empty first coordinate is invalid
|
|
geom = deepcopy(geojson_polygon)
|
|
geom['coordinates'] = [[[]]]
|
|
assert not is_valid_geom(geom)
|
|
|
|
|
|
def test_is_valid_geom_multipolygon(geojson_multipolygon):
|
|
"""Properly formed GeoJSON MultiPolygon is valid"""
|
|
|
|
assert is_valid_geom(geojson_multipolygon)
|
|
|
|
# Empty iterables are invalid
|
|
geom = deepcopy(geojson_multipolygon)
|
|
geom['coordinates'] = []
|
|
assert not is_valid_geom(geom)
|
|
|
|
geom = deepcopy(geojson_multipolygon)
|
|
geom['coordinates'] = [[]]
|
|
assert not is_valid_geom(geom)
|
|
|
|
geom = deepcopy(geojson_multipolygon)
|
|
geom['coordinates'] = [[[]]]
|
|
assert not is_valid_geom(geom)
|
|
|
|
# Empty first coordinate is invalid
|
|
geom = deepcopy(geojson_multipolygon)
|
|
geom['coordinates'] = [[[[]]]]
|
|
assert not is_valid_geom(geom)
|
|
|
|
|
|
def test_is_valid_geom_geomcollection(geojson_geomcollection):
|
|
"""Properly formed GeoJSON GeometryCollection is valid"""
|
|
|
|
assert is_valid_geom(geojson_geomcollection)
|
|
|
|
# Empty GeometryCollection is invalid
|
|
geom = deepcopy(geojson_geomcollection)
|
|
geom['geometries'] = []
|
|
assert not is_valid_geom(geom)
|
|
|
|
|
|
def test_is_valid_geom_invalid_inputs():
|
|
"""Improperly formed GeoJSON objects should fail"""
|
|
|
|
assert not is_valid_geom('type')
|
|
assert not is_valid_geom(['type'])
|
|
assert not is_valid_geom({'type': 'Invalid'}) # wrong type
|
|
assert not is_valid_geom({'type': 'Point'}) # Missing coordinates
|
|
|
|
|
|
def test_rasterize_point(geojson_point):
|
|
expected = np.zeros(shape=DEFAULT_SHAPE, dtype='uint8')
|
|
expected[2, 2] = 1
|
|
|
|
assert np.array_equal(
|
|
rasterize([geojson_point], out_shape=DEFAULT_SHAPE),
|
|
expected
|
|
)
|
|
|
|
|
|
def test_rasterize_multipoint(geojson_multipoint):
|
|
expected = np.zeros(shape=DEFAULT_SHAPE, dtype='uint8')
|
|
expected[2, 2] = 1
|
|
expected[4, 4] = 1
|
|
|
|
assert np.array_equal(
|
|
rasterize([geojson_multipoint], out_shape=DEFAULT_SHAPE),
|
|
expected
|
|
)
|
|
|
|
|
|
def test_rasterize_line(geojson_line):
|
|
expected = np.zeros(shape=DEFAULT_SHAPE, dtype='uint8')
|
|
expected[2, 2] = 1
|
|
expected[3, 3] = 1
|
|
expected[4, 4] = 1
|
|
|
|
assert np.array_equal(
|
|
rasterize([geojson_line], out_shape=DEFAULT_SHAPE),
|
|
expected
|
|
)
|
|
|
|
|
|
def test_rasterize_multiline(geojson_multiline):
|
|
expected = np.zeros(shape=DEFAULT_SHAPE, dtype='uint8')
|
|
expected[2, 2] = 1
|
|
expected[3, 3] = 1
|
|
expected[4, 4] = 1
|
|
expected[0, 0:5] = 1
|
|
|
|
assert np.array_equal(
|
|
rasterize([geojson_multiline], out_shape=DEFAULT_SHAPE),
|
|
expected
|
|
)
|
|
|
|
|
|
def test_rasterize_polygon(geojson_polygon, basic_image_2x2):
|
|
assert np.array_equal(
|
|
rasterize([geojson_polygon], out_shape=DEFAULT_SHAPE),
|
|
basic_image_2x2
|
|
)
|
|
|
|
|
|
def test_rasterize_multipolygon(geojson_multipolygon):
|
|
expected = np.zeros(shape=DEFAULT_SHAPE, dtype='uint8')
|
|
expected[0:1, 0:1] = 1
|
|
expected[2:4, 2:4] = 1
|
|
|
|
assert np.array_equal(
|
|
rasterize([geojson_multipolygon], out_shape=DEFAULT_SHAPE),
|
|
expected
|
|
)
|
|
|
|
|
|
def test_rasterize_geomcollection(geojson_geomcollection):
|
|
expected = np.zeros(shape=DEFAULT_SHAPE, dtype='uint8')
|
|
expected[0:1, 0:1] = 1
|
|
expected[2:4, 2:4] = 1
|
|
|
|
assert np.array_equal(
|
|
rasterize([geojson_geomcollection], out_shape=DEFAULT_SHAPE),
|
|
expected
|
|
)
|
|
|
|
|
|
def test_rasterize_invalid_geom():
|
|
"""Invalid GeoJSON should fail with exception"""
|
|
|
|
with pytest.raises(ValueError):
|
|
rasterize([{'type'}], out_shape=DEFAULT_SHAPE)
|
|
|
|
with pytest.raises(ValueError):
|
|
rasterize([{'type': 'Invalid'}], out_shape=DEFAULT_SHAPE)
|
|
|
|
with pytest.raises(ValueError):
|
|
rasterize([{'type': 'Point'}], out_shape=DEFAULT_SHAPE)
|
|
|
|
with pytest.raises(ValueError):
|
|
# Empty coordinates should fail
|
|
rasterize([{'type': 'Point', 'coordinates': []}],
|
|
out_shape=DEFAULT_SHAPE)
|
|
|
|
with pytest.raises(ValueError):
|
|
# Empty GeometryCollection should fail
|
|
rasterize([{'type': 'GeometryCollection', 'geometries': []}],
|
|
out_shape=DEFAULT_SHAPE)
|
|
|
|
with pytest.raises(ValueError):
|
|
# GeometryCollection with bad geometry should fail
|
|
rasterize([{'type': 'GeometryCollection', 'geometries': [
|
|
{'type': 'Invalid', 'coordinates': []}]}], out_shape=DEFAULT_SHAPE)
|
|
|
|
|
|
def test_rasterize_out_image(basic_geometry, basic_image_2x2):
|
|
"""Rasterize operation should succeed for an out image."""
|
|
out = np.zeros(DEFAULT_SHAPE)
|
|
rasterize([basic_geometry], out=out)
|
|
assert np.array_equal(basic_image_2x2, out)
|
|
|
|
|
|
def test_rasterize_invalid_out_dtype(basic_geometry):
|
|
"""A non-supported data type for out should raise an exception."""
|
|
out = np.zeros(DEFAULT_SHAPE, dtype=np.int64)
|
|
with pytest.raises(ValueError):
|
|
rasterize([basic_geometry], out=out)
|
|
|
|
|
|
def test_rasterize_shapes_out_dtype_mismatch(basic_geometry):
|
|
"""Shape values must be able to fit in data type for out."""
|
|
out = np.zeros(DEFAULT_SHAPE, dtype=np.uint8)
|
|
with pytest.raises(ValueError):
|
|
rasterize([(basic_geometry, 10000000)], out=out)
|
|
|
|
|
|
def test_rasterize_missing_out(basic_geometry):
|
|
"""If both out and out_shape are missing, should raise exception."""
|
|
with pytest.raises(ValueError):
|
|
rasterize([basic_geometry], out=None, out_shape=None)
|
|
|
|
|
|
def test_rasterize_missing_shapes():
|
|
"""Shapes are required for this operation."""
|
|
with pytest.raises(ValueError) as ex:
|
|
rasterize([], out_shape=DEFAULT_SHAPE)
|
|
|
|
assert 'No valid geometry objects' in str(ex.value)
|
|
|
|
|
|
def test_rasterize_invalid_shapes():
|
|
"""Invalid shapes should raise an exception rather than be skipped."""
|
|
with pytest.raises(ValueError) as ex:
|
|
rasterize([{'foo': 'bar'}], out_shape=DEFAULT_SHAPE)
|
|
|
|
assert 'Invalid geometry object' in str(ex.value)
|
|
|
|
|
|
def test_rasterize_invalid_out_shape(basic_geometry):
|
|
"""output array shape must be 2D."""
|
|
with pytest.raises(ValueError) as ex:
|
|
rasterize([basic_geometry], out_shape=(1, 10, 10))
|
|
assert 'Invalid out_shape' in str(ex.value)
|
|
|
|
with pytest.raises(ValueError) as ex:
|
|
rasterize([basic_geometry], out_shape=(10,))
|
|
assert 'Invalid out_shape' in str(ex.value)
|
|
|
|
for shape in [(0, 0), (1, 0), (0, 1)]:
|
|
with pytest.raises(ValueError) as ex:
|
|
rasterize([basic_geometry], out_shape=shape)
|
|
assert 'must be > 0' in str(ex.value)
|
|
|
|
|
|
def test_rasterize_default_value(basic_geometry, basic_image_2x2):
|
|
"""All shapes should rasterize to the default value."""
|
|
default_value = 2
|
|
truth = basic_image_2x2 * default_value
|
|
|
|
assert np.array_equal(
|
|
truth,
|
|
rasterize(
|
|
[basic_geometry], out_shape=DEFAULT_SHAPE,
|
|
default_value=default_value
|
|
)
|
|
)
|
|
|
|
|
|
def test_rasterize_invalid_default_value(basic_geometry):
|
|
"""A default value that requires an int64 should raise an exception."""
|
|
with pytest.raises(ValueError):
|
|
rasterize(
|
|
[basic_geometry], out_shape=DEFAULT_SHAPE,
|
|
default_value=1000000000000
|
|
)
|
|
|
|
|
|
def test_rasterize_fill_value(basic_geometry, basic_image_2x2):
|
|
"""All pixels not covered by shapes should be given fill value."""
|
|
default_value = 2
|
|
assert np.array_equal(
|
|
basic_image_2x2 + 1,
|
|
rasterize(
|
|
[basic_geometry], out_shape=DEFAULT_SHAPE, fill=1,
|
|
default_value=default_value
|
|
)
|
|
)
|
|
|
|
|
|
def test_rasterize_invalid_fill_value(basic_geometry):
|
|
"""A fill value that requires an int64 should raise an exception."""
|
|
with pytest.raises(ValueError):
|
|
rasterize(
|
|
[basic_geometry], out_shape=DEFAULT_SHAPE, fill=1000000000000,
|
|
default_value=2
|
|
)
|
|
|
|
|
|
def test_rasterize_fill_value_dtype_mismatch(basic_geometry):
|
|
"""A fill value that doesn't match dtype should fail."""
|
|
with pytest.raises(ValueError):
|
|
rasterize(
|
|
[basic_geometry], out_shape=DEFAULT_SHAPE, fill=1000000,
|
|
default_value=2, dtype=np.uint8
|
|
)
|
|
|
|
|
|
def test_rasterize_all_touched(basic_geometry, basic_image):
|
|
assert np.array_equal(
|
|
basic_image,
|
|
rasterize(
|
|
[basic_geometry], out_shape=DEFAULT_SHAPE, all_touched=True
|
|
)
|
|
)
|
|
|
|
def test_rasterize_merge_alg(basic_geometry, basic_image_2x2x2):
|
|
"""
|
|
Rasterizing two times the basic_geometry with the "add" merging
|
|
option should output the shape with the value 2
|
|
"""
|
|
with rasterio.Env():
|
|
assert np.array_equal(
|
|
basic_image_2x2x2,
|
|
rasterize(
|
|
[basic_geometry, basic_geometry], merge_alg='add',
|
|
out_shape=DEFAULT_SHAPE)
|
|
)
|
|
|
|
|
|
def test_rasterize_value(basic_geometry, basic_image_2x2):
|
|
"""
|
|
All shapes should rasterize to the value passed in a tuple alongside
|
|
each shape
|
|
"""
|
|
value = 5
|
|
assert np.array_equal(
|
|
basic_image_2x2 * value,
|
|
rasterize(
|
|
[(basic_geometry, value)], out_shape=DEFAULT_SHAPE
|
|
)
|
|
)
|
|
|
|
|
|
def test_rasterize_invalid_value(basic_geometry):
|
|
"""A shape value that requires an int64 should raise an exception."""
|
|
with pytest.raises(ValueError) as ex:
|
|
rasterize(
|
|
[(basic_geometry, 1000000000000)], out_shape=DEFAULT_SHAPE
|
|
)
|
|
|
|
assert 'dtype must be one of' in str(ex.value)
|
|
|
|
|
|
def test_rasterize_supported_dtype(basic_geometry):
|
|
"""Supported data types should return valid results."""
|
|
supported_types = (
|
|
('int16', -32768),
|
|
('int32', -2147483648),
|
|
('uint8', 255),
|
|
('uint16', 65535),
|
|
('uint32', 4294967295),
|
|
('float32', 1.434532),
|
|
('float64', -98332.133422114)
|
|
)
|
|
|
|
for dtype, default_value in supported_types:
|
|
truth = np.zeros(DEFAULT_SHAPE, dtype=dtype)
|
|
truth[2:4, 2:4] = default_value
|
|
|
|
result = rasterize(
|
|
[basic_geometry],
|
|
out_shape=DEFAULT_SHAPE,
|
|
default_value=default_value,
|
|
dtype=dtype
|
|
)
|
|
assert np.array_equal(result, truth)
|
|
assert np.dtype(result.dtype) == np.dtype(truth.dtype)
|
|
|
|
result = rasterize(
|
|
[(basic_geometry, default_value)],
|
|
out_shape=DEFAULT_SHAPE
|
|
)
|
|
if np.dtype(dtype).kind == 'f':
|
|
assert np.allclose(result, truth)
|
|
else:
|
|
assert np.array_equal(result, truth)
|
|
# Since dtype is auto-detected, it may not match due to upcasting
|
|
|
|
|
|
def test_rasterize_unsupported_dtype(basic_geometry):
|
|
"""Unsupported types should all raise exceptions."""
|
|
unsupported_types = (
|
|
('int8', -127),
|
|
('int64', 20439845334323),
|
|
('float16', -9343.232)
|
|
)
|
|
|
|
for dtype, default_value in unsupported_types:
|
|
with pytest.raises(ValueError):
|
|
rasterize(
|
|
[basic_geometry],
|
|
out_shape=DEFAULT_SHAPE,
|
|
default_value=default_value,
|
|
dtype=dtype
|
|
)
|
|
|
|
with pytest.raises(ValueError):
|
|
rasterize(
|
|
[(basic_geometry, default_value)],
|
|
out_shape=DEFAULT_SHAPE,
|
|
dtype=dtype
|
|
)
|
|
|
|
|
|
def test_rasterize_mismatched_dtype(basic_geometry):
|
|
"""Mismatched values and dtypes should raise exceptions."""
|
|
mismatched_types = (('uint8', 3.2423), ('uint8', -2147483648))
|
|
for dtype, default_value in mismatched_types:
|
|
with pytest.raises(ValueError):
|
|
rasterize(
|
|
[basic_geometry],
|
|
out_shape=DEFAULT_SHAPE,
|
|
default_value=default_value,
|
|
dtype=dtype
|
|
)
|
|
|
|
with pytest.raises(ValueError):
|
|
rasterize(
|
|
[(basic_geometry, default_value)],
|
|
out_shape=DEFAULT_SHAPE,
|
|
dtype=dtype
|
|
)
|
|
|
|
|
|
def test_rasterize_geometries_symmetric():
|
|
"""Make sure that rasterize is symmetric with shapes."""
|
|
transform = (1.0, 0.0, 0.0, 0.0, -1.0, 0.0)
|
|
truth = np.zeros(DEFAULT_SHAPE, dtype=rasterio.ubyte)
|
|
truth[2:5, 2:5] = 1
|
|
s = shapes(truth, transform=transform)
|
|
result = rasterize(s, out_shape=DEFAULT_SHAPE, transform=transform)
|
|
assert np.array_equal(result, truth)
|
|
|
|
|
|
def test_rasterize_internal_driver_manager(basic_geometry):
|
|
"""Rasterize should work without explicitly calling driver manager."""
|
|
assert rasterize([basic_geometry], out_shape=DEFAULT_SHAPE).sum() == 4
|
|
|
|
|
|
def test_rasterize_geo_interface(geojson_polygon):
|
|
"""Objects that implement the geo interface should rasterize properly"""
|
|
|
|
class GeoObj:
|
|
@property
|
|
def __geo_interface__(self):
|
|
return geojson_polygon
|
|
|
|
assert rasterize([GeoObj()], out_shape=DEFAULT_SHAPE).sum() == 4
|
|
|
|
|
|
|
|
def test_shapes(basic_image):
|
|
"""Test creation of shapes from pixel values."""
|
|
results = list(shapes(basic_image))
|
|
|
|
assert len(results) == 2
|
|
|
|
shape, value = results[0]
|
|
assert shape == {
|
|
'coordinates': [
|
|
[(2, 2), (2, 5), (5, 5), (5, 2), (2, 2)]
|
|
],
|
|
'type': 'Polygon'
|
|
}
|
|
assert value == 1
|
|
|
|
shape, value = results[1]
|
|
assert shape == {
|
|
'coordinates': [
|
|
[(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)],
|
|
[(2, 2), (5, 2), (5, 5), (2, 5), (2, 2)]
|
|
],
|
|
'type': 'Polygon'
|
|
}
|
|
assert value == 0
|
|
|
|
|
|
def test_shapes_band(pixelated_image, pixelated_image_file):
|
|
"""Shapes from a band should match shapes from an array."""
|
|
truth = list(shapes(pixelated_image))
|
|
|
|
with rasterio.open(pixelated_image_file) as src:
|
|
band = rasterio.band(src, 1)
|
|
assert truth == list(shapes(band))
|
|
|
|
# Mask band should function, but will mask out some results
|
|
assert truth[0] == list(shapes(band, mask=band))[0]
|
|
|
|
|
|
def test_shapes_connectivity_rook(diagonal_image):
|
|
"""
|
|
Diagonals are not connected, so there will be 1 feature per pixel plus
|
|
background.
|
|
"""
|
|
assert len(list(shapes(diagonal_image, connectivity=4))) == 12
|
|
|
|
|
|
def test_shapes_connectivity_queen(diagonal_image):
|
|
"""
|
|
Diagonals are connected, so there will be 1 feature for all pixels plus
|
|
background.
|
|
"""
|
|
assert len(list(shapes(diagonal_image, connectivity=8))) == 2
|
|
|
|
|
|
def test_shapes_connectivity_invalid(diagonal_image):
|
|
"""Invalid connectivity should raise exception."""
|
|
with pytest.raises(ValueError):
|
|
assert next(shapes(diagonal_image, connectivity=12))
|
|
|
|
|
|
def test_shapes_mask(basic_image):
|
|
"""Only pixels not masked out should be converted to features."""
|
|
mask = np.ones(basic_image.shape, dtype=rasterio.bool_)
|
|
mask[4:5, 4:5] = False
|
|
|
|
results = list(shapes(basic_image, mask=mask))
|
|
|
|
assert len(results) == 2
|
|
|
|
shape, value = results[0]
|
|
assert shape == {
|
|
'coordinates': [
|
|
[(2, 2), (2, 5), (4, 5), (4, 4), (5, 4), (5, 2), (2, 2)]
|
|
],
|
|
'type': 'Polygon'
|
|
}
|
|
assert value == 1
|
|
|
|
|
|
def test_shapes_blank_mask(basic_image):
|
|
"""Mask is blank so results should mask shapes without mask."""
|
|
assert np.array_equal(
|
|
list(shapes(
|
|
basic_image,
|
|
mask=np.ones(basic_image.shape, dtype=rasterio.bool_))
|
|
),
|
|
list(shapes(basic_image))
|
|
)
|
|
|
|
|
|
def test_shapes_invalid_mask_shape(basic_image):
|
|
"""A mask that is the wrong shape should fail."""
|
|
with pytest.raises(ValueError):
|
|
next(shapes(
|
|
basic_image,
|
|
mask=np.ones(
|
|
(basic_image.shape[0] + 10, basic_image.shape[1] + 10),
|
|
dtype=rasterio.bool_
|
|
)
|
|
))
|
|
|
|
|
|
def test_shapes_invalid_mask_dtype(basic_image):
|
|
"""A mask that is the wrong dtype should fail."""
|
|
for dtype in ('int8', 'int16', 'int32'):
|
|
with pytest.raises(ValueError):
|
|
next(shapes(
|
|
basic_image,
|
|
mask=np.ones(basic_image.shape, dtype=dtype)
|
|
))
|
|
|
|
|
|
def test_shapes_supported_dtypes(basic_image):
|
|
"""Supported data types should return valid results."""
|
|
supported_types = (
|
|
('int16', -32768),
|
|
('int32', -2147483648),
|
|
('uint8', 255),
|
|
('uint16', 65535),
|
|
('float32', 1.434532)
|
|
)
|
|
|
|
for dtype, test_value in supported_types:
|
|
shape, value = next(shapes(basic_image.astype(dtype) * test_value))
|
|
assert np.allclose(value, test_value)
|
|
|
|
|
|
def test_shapes_unsupported_dtypes(basic_image):
|
|
"""Unsupported data types should raise exceptions."""
|
|
unsupported_types = (
|
|
('int8', -127),
|
|
('uint32', 4294967295),
|
|
('int64', 20439845334323),
|
|
('float16', -9343.232),
|
|
('float64', -98332.133422114)
|
|
)
|
|
|
|
for dtype, test_value in unsupported_types:
|
|
with pytest.raises(ValueError):
|
|
next(shapes(basic_image.astype(dtype) * test_value))
|
|
|
|
|
|
def test_shapes_internal_driver_manager(basic_image):
|
|
"""Shapes should work without explicitly calling driver manager."""
|
|
assert next(shapes(basic_image))[0]['type'] == 'Polygon'
|
|
|
|
|
|
def test_sieve_small(basic_image, pixelated_image):
|
|
"""
|
|
Setting the size smaller than or equal to the size of the feature in the
|
|
image should not change the image.
|
|
"""
|
|
assert np.array_equal(
|
|
basic_image,
|
|
sieve(pixelated_image, basic_image.sum())
|
|
)
|
|
|
|
|
|
def test_sieve_large(basic_image):
|
|
"""
|
|
Setting the size larger than size of feature should leave us an empty image.
|
|
"""
|
|
assert not np.any(sieve(basic_image, basic_image.sum() + 1))
|
|
|
|
|
|
def test_sieve_invalid_size(basic_image):
|
|
for invalid_size in (0, 45.1234, basic_image.size + 1):
|
|
with pytest.raises(ValueError):
|
|
sieve(basic_image, invalid_size)
|
|
|
|
|
|
def test_sieve_connectivity_rook(diagonal_image):
|
|
"""Diagonals are not connected, so feature is removed."""
|
|
assert not np.any(
|
|
sieve(diagonal_image, diagonal_image.sum(), connectivity=4)
|
|
)
|
|
|
|
|
|
def test_sieve_connectivity_queen(diagonal_image):
|
|
"""Diagonals are connected, so feature is retained."""
|
|
assert np.array_equal(
|
|
diagonal_image,
|
|
sieve(diagonal_image, diagonal_image.sum(), connectivity=8)
|
|
)
|
|
|
|
|
|
def test_sieve_connectivity_invalid(basic_image):
|
|
with pytest.raises(ValueError):
|
|
sieve(basic_image, 54, connectivity=12)
|
|
|
|
|
|
def test_sieve_out(basic_image):
|
|
"""Output array passed in should match the returned array."""
|
|
output = np.zeros_like(basic_image)
|
|
output[1:3, 1:3] = 5
|
|
sieved_image = sieve(basic_image, basic_image.sum(), out=output)
|
|
assert np.array_equal(basic_image, sieved_image)
|
|
assert np.array_equal(output, sieved_image)
|
|
|
|
|
|
def test_sieve_invalid_out(basic_image):
|
|
"""Output with different dtype or shape should fail."""
|
|
with pytest.raises(ValueError):
|
|
sieve(
|
|
basic_image, basic_image.sum(),
|
|
out=np.zeros(basic_image.shape, dtype=rasterio.int32)
|
|
)
|
|
|
|
with pytest.raises(ValueError):
|
|
sieve(
|
|
basic_image, basic_image.sum(),
|
|
out=np.zeros(
|
|
(basic_image.shape[0] + 10, basic_image.shape[1] + 10),
|
|
dtype=rasterio.ubyte
|
|
)
|
|
)
|
|
|
|
|
|
def test_sieve_mask(basic_image):
|
|
"""
|
|
Only areas within the overlap of mask and input will be kept, so long
|
|
as mask is a bool or uint8 dtype.
|
|
"""
|
|
mask = np.ones(basic_image.shape, dtype=rasterio.bool_)
|
|
mask[4:5, 4:5] = False
|
|
truth = basic_image * np.invert(mask)
|
|
|
|
sieved_image = sieve(basic_image, basic_image.sum(), mask=mask)
|
|
assert sieved_image.sum() > 0
|
|
|
|
assert np.array_equal(
|
|
truth,
|
|
sieved_image
|
|
)
|
|
|
|
assert np.array_equal(
|
|
truth.astype(rasterio.uint8),
|
|
sieved_image
|
|
)
|
|
|
|
|
|
def test_sieve_blank_mask(basic_image):
|
|
"""A blank mask should have no effect."""
|
|
mask = np.ones(basic_image.shape, dtype=rasterio.bool_)
|
|
assert np.array_equal(
|
|
basic_image,
|
|
sieve(basic_image, basic_image.sum(), mask=mask)
|
|
)
|
|
|
|
|
|
def test_sieve_invalid_mask_shape(basic_image):
|
|
"""A mask that is the wrong shape should fail."""
|
|
with pytest.raises(ValueError):
|
|
sieve(
|
|
basic_image, basic_image.sum(),
|
|
mask=np.ones(
|
|
(basic_image.shape[0] + 10, basic_image.shape[1] + 10),
|
|
dtype=rasterio.bool_
|
|
)
|
|
)
|
|
|
|
|
|
def test_sieve_invalid_mask_dtype(basic_image):
|
|
"""A mask that is the wrong dtype should fail."""
|
|
for dtype in ('int8', 'int16', 'int32'):
|
|
with pytest.raises(ValueError):
|
|
sieve(
|
|
basic_image, basic_image.sum(),
|
|
mask=np.ones(basic_image.shape, dtype=dtype)
|
|
)
|
|
|
|
|
|
def test_sieve_supported_dtypes(basic_image):
|
|
"""Supported data types should return valid results."""
|
|
supported_types = (
|
|
('int16', -32768),
|
|
('int32', -2147483648),
|
|
('uint8', 255),
|
|
('uint16', 65535)
|
|
)
|
|
|
|
for dtype, test_value in supported_types:
|
|
truth = (basic_image).astype(dtype) * test_value
|
|
sieved_image = sieve(truth, basic_image.sum())
|
|
assert np.array_equal(truth, sieved_image)
|
|
assert np.dtype(sieved_image.dtype) == np.dtype(dtype)
|
|
|
|
|
|
def test_sieve_unsupported_dtypes(basic_image):
|
|
"""Unsupported data types should raise exceptions."""
|
|
unsupported_types = (
|
|
('int8', -127),
|
|
('uint32', 4294967295),
|
|
('int64', 20439845334323),
|
|
('float16', -9343.232),
|
|
('float32', 1.434532),
|
|
('float64', -98332.133422114)
|
|
)
|
|
|
|
for dtype, test_value in unsupported_types:
|
|
with pytest.raises(ValueError):
|
|
sieve(
|
|
(basic_image).astype(dtype) * test_value,
|
|
basic_image.sum()
|
|
)
|
|
|
|
|
|
def test_sieve_band(pixelated_image, pixelated_image_file):
|
|
"""Sieving a band from a raster file should match sieve of array."""
|
|
|
|
truth = sieve(pixelated_image, 9)
|
|
|
|
with rasterio.open(pixelated_image_file) as src:
|
|
band = rasterio.band(src, 1)
|
|
assert np.array_equal(truth, sieve(band, 9))
|
|
|
|
# Mask band should also work but will be a no-op
|
|
assert np.array_equal(
|
|
pixelated_image,
|
|
sieve(band, 9, mask=band)
|
|
)
|
|
|
|
|
|
def test_sieve_internal_driver_manager(basic_image, pixelated_image):
|
|
"""Sieve should work without explicitly calling driver manager."""
|
|
assert np.array_equal(
|
|
basic_image,
|
|
sieve(pixelated_image, basic_image.sum())
|
|
)
|