rasterio/docs/topics/reproject.rst
2020-03-20 13:42:49 -06:00

171 lines
6.2 KiB
ReStructuredText

Reprojection
============
Rasterio can map the pixels of a destination raster with an associated
coordinate reference system and transform to the pixels of a source image with
a different coordinate reference system and transform. This process is known as
reprojection.
Rasterio's :func:`rasterio.warp.reproject()` is a geospatial-specific analog
to SciPy's ``scipy.ndimage.interpolation.geometric_transform()`` [1]_.
The code below reprojects between two arrays, using no pre-existing GIS
datasets. :func:`rasterio.warp.reproject()` has two positional arguments: source
and destination. The remaining keyword arguments parameterize the reprojection
transform.
.. code-block:: python
import numpy as np
import rasterio
from rasterio import Affine as A
from rasterio.warp import reproject, Resampling
with rasterio.Env():
# As source: a 512 x 512 raster centered on 0 degrees E and 0
# degrees N, each pixel covering 15".
rows, cols = src_shape = (512, 512)
d = 1.0/240 # decimal degrees per pixel
# The following is equivalent to
# A(d, 0, -cols*d/2, 0, -d, rows*d/2).
src_transform = A.translation(-cols*d/2, rows*d/2) * A.scale(d, -d)
src_crs = {'init': 'EPSG:4326'}
source = np.ones(src_shape, np.uint8)*255
# Destination: a 1024 x 1024 dataset in Web Mercator (EPSG:3857)
# with origin at 0.0, 0.0.
dst_shape = (1024, 1024)
dst_transform = A.translation(-237481.5, 237536.4) * A.scale(425.0, -425.0)
dst_crs = {'init': 'EPSG:3857'}
destination = np.zeros(dst_shape, np.uint8)
reproject(
source,
destination,
src_transform=src_transform,
src_crs=src_crs,
dst_transform=dst_transform,
dst_crs=dst_crs,
resampling=Resampling.nearest)
# Assert that the destination is only partly filled.
assert destination.any()
assert not destination.all()
See `examples/reproject.py <https://github.com/mapbox/rasterio/blob/master/examples/reproject.py>`__
for code that writes the destination array to a GeoTIFF file. I've uploaded the
resulting file to a Mapbox map to show that the reprojection is
correct: https://a.tiles.mapbox.com/v3/sgillies.hfek2oko/page.html?secure=1#6/0.000/0.033.
Estimating optimal output shape
-------------------------------
Rasterio provides a :func:`rasterio.warp.calculate_default_transform()` function to
determine the optimal resolution and transform for the destination raster.
Given a source dataset in a known coordinate reference system, this
function will return a ``transform, width, height`` tuple which is calculated
by libgdal.
Reprojecting a GeoTIFF dataset
------------------------------
Reprojecting a GeoTIFF dataset from one coordinate reference system is a common
use case. Rasterio provides a few utilities to make this even easier:
:func:`~rasterio.warp.transform_bounds()`
transforms the bounding coordinates of the source raster to the target
coordinate reference system, densifiying points along the edges to account
for non-linear transformations of the edges.
:func:`~rasterio.warp.calculate_default_transform()`
transforms bounds to target coordinate system, calculates resolution if not
provided, and returns destination transform and dimensions.
.. code-block:: python
import numpy as np
import rasterio
from rasterio.warp import calculate_default_transform, reproject, Resampling
dst_crs = 'EPSG:4326'
with rasterio.open('rasterio/tests/data/RGB.byte.tif') as src:
transform, width, height = calculate_default_transform(
src.crs, dst_crs, src.width, src.height, *src.bounds)
kwargs = src.meta.copy()
kwargs.update({
'crs': dst_crs,
'transform': transform,
'width': width,
'height': height
})
with rasterio.open('/tmp/RGB.byte.wgs84.tif', 'w', **kwargs) as dst:
for i in range(1, src.count + 1):
reproject(
source=rasterio.band(src, i),
destination=rasterio.band(dst, i),
src_transform=src.transform,
src_crs=src.crs,
dst_transform=transform,
dst_crs=dst_crs,
resampling=Resampling.nearest)
See ``rasterio/rio/warp.py`` for more complex examples of reprojection based on
new bounds, dimensions, and resolution (as well as a command-line interface
described :ref:`here <warp>`).
It is also possible to use :func:`~rasterio.warp.reproject()` to create an output dataset zoomed
out by a factor of 2. Methods of the :class:`rasterio.Affine` class help us generate
the output dataset's transform matrix and, thereby, its spatial extent.
.. code-block:: python
import numpy as np
import rasterio
from rasterio import Affine as A
from rasterio.warp import reproject, Resampling
with rasterio.open('rasterio/tests/data/RGB.byte.tif') as src:
src_transform = src.transform
# Zoom out by a factor of 2 from the center of the source
# dataset. The destination transform is the product of the
# source transform, a translation down and to the right, and
# a scaling.
dst_transform = src_transform*A.translation(
-src.width/2.0, -src.height/2.0)*A.scale(2.0)
data = src.read()
kwargs = src.meta
kwargs['transform'] = dst_transform
with rasterio.open('/tmp/zoomed-out.tif', 'w', **kwargs) as dst:
for i, band in enumerate(data, 1):
dest = np.zeros_like(band)
reproject(
band,
dest,
src_transform=src_transform,
src_crs=src.crs,
dst_transform=dst_transform,
dst_crs=src.crs,
resampling=Resampling.nearest)
dst.write(dest, indexes=i)
.. image:: https://farm8.staticflickr.com/7399/16390100651_54f01b8601_b_d.jpg)
References
----------
.. [1] https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.geometric_transform.html#scipy.ndimage.geometric_transform