========================================== Rasterio: access to geospatial raster data ========================================== Geographic information systems use GeoTIFF and other formats to organize and store gridded raster datasets such as satellite imagery and terrain models. Rasterio reads and writes these formats and provides a Python API based on Numpy N-dimensional arrays and GeoJSON. Here's an example program that extracts the GeoJSON shapes of a raster's valid data footprint. .. code:: python import rasterio import rasterio.features import rasterio.warp with rasterio.open('example.tif') as dataset: # Read the dataset's valid data mask as a ndarray. mask = dataset.dataset_mask() # Extract feature shapes and values from the array. for geom, val in rasterio.features.shapes( mask, transform=dataset.transform): # Transform shapes from the dataset's own coordinate # reference system to CRS84 (EPSG:4326). geom = rasterio.warp.transform_geom( dataset.crs, 'EPSG:4326', geom, precision=6) # Print GeoJSON shapes to stdout. print(geom) The output of the program: .. code:: python {'type': 'Polygon', 'coordinates': [[(-77.730817, 25.282335), ...]]} Rasterio supports Python versions 3.6 or higher. .. toctree:: :maxdepth: 2 intro installation quickstart cli topics/index Rasterio API Reference contributing faq Indices and Tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search` .. _GDAL: http://gdal.org/