mirror of
https://github.com/rasterio/rasterio.git
synced 2025-12-08 17:36:12 +00:00
DOC: Add intersphinx for matplotlib & numpy (#2527)
This commit is contained in:
parent
f1ad179d63
commit
c17bc35a80
@ -367,4 +367,6 @@ epub_exclude_files = ['search.html']
|
||||
intersphinx_mapping = {
|
||||
"python": ("https://docs.python.org/", None),
|
||||
"gdal": ("https://gdal.org/", None),
|
||||
"numpy": ("https://numpy.org/doc/stable", None),
|
||||
"matplotlib": ("https://matplotlib.org/stable/", None),
|
||||
}
|
||||
|
||||
@ -161,7 +161,7 @@ the GDAL convention, bands are indexed from 1.
|
||||
(1,)
|
||||
>>> band1 = dataset.read(1)
|
||||
|
||||
The :meth:`~rasterio.io.DatasetReader.read` method returns a Numpy N-D array.
|
||||
The :meth:`~rasterio.io.DatasetReader.read` method returns a :class:`numpy.ndarray`.
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
|
||||
@ -9,7 +9,7 @@ rows and columns as the dataset in which non-zero elements (typically 255) indic
|
||||
corresponding data elements are valid. Other elements are invalid, or *nodata*
|
||||
elements.
|
||||
|
||||
The other kind of mask is Numpy's `masked array <http://docs.scipy.org/doc/numpy/reference/maskedarray.generic.html>`__
|
||||
The other kind of mask is a :class:`numpy.ma.MaskedArray`
|
||||
which has the inverse sense: `True` values in a masked array's mask indicate
|
||||
that the corresponding data elements are invalid. With care, you can safely
|
||||
navigate convert between the two mask types.
|
||||
@ -78,7 +78,7 @@ array shows the ``255`` values that indicate *valid data* regions.
|
||||
[255, 255, 255, 255, 255],
|
||||
[255, 255, 255, 255, 255]], dtype=uint8)
|
||||
|
||||
Displayed using Matplotlib's `imshow()`, the mask looks like this:
|
||||
Displayed using :func:`matplotlib.pyplot.imshow`, the mask looks like this:
|
||||
|
||||
.. image:: ../img/mask_band.png
|
||||
|
||||
@ -140,7 +140,7 @@ certainly can. Consider a fresh copy of that file.
|
||||
|
||||
This time we'll read all 3 band masks
|
||||
(based on the nodata values, not a .msk GeoTIFF) and show them
|
||||
as an RGB image (with the help of `numpy.dstack()`):
|
||||
as an RGB image (with the help of :func:`numpy.dstack`):
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@ -185,7 +185,7 @@ considered valid.
|
||||
Numpy masked arrays
|
||||
-------------------
|
||||
|
||||
If you want, you can read dataset bands as numpy masked arrays.
|
||||
If you want, you can read dataset bands as a :class:`numpy.ma.MaskedArray`.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
|
||||
@ -127,7 +127,7 @@ Removed: ``src.read_band()``
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The ``read_band()`` method has been replaced by ``read()``, which allows for
|
||||
faster I/O and reading multiple bands into a single ``numpy.ndarray()``.
|
||||
faster I/O and reading multiple bands into a single :class:`numpy.ndarray`.
|
||||
|
||||
For example:
|
||||
|
||||
|
||||
@ -24,7 +24,7 @@ The first argument to :func:`~rasterio.plot.show` represent the data source to b
|
||||
|
||||
* A dataset object opened in 'r' mode
|
||||
* A single band of a source, represented by a ``(src, band_index)`` tuple
|
||||
* A numpy ndarray, 2D or 3D. If the array is 3D, ensure that it is in rasterio band order.
|
||||
* A :class:`numpy.ndarray`, 2D or 3D. If the array is 3D, ensure that it is in rasterio band order.
|
||||
|
||||
Thus the following operations for 3-band RGB data are equivalent. Note that when passing arrays,
|
||||
you can pass in a transform in order to get extent labels.
|
||||
|
||||
@ -55,7 +55,7 @@ a file can be read like this:
|
||||
>>> array.shape
|
||||
(718, 791)
|
||||
|
||||
The returned object is a 2-dimensional Numpy ndarray. The representation of
|
||||
The returned object is a 2-dimensional :class:`numpy.ndarray`. The representation of
|
||||
that array at the Python prompt is a summary; the GeoTIFF file that
|
||||
Rasterio uses for testing has 0 values in the corners, but has nonzero values
|
||||
elsewhere.
|
||||
|
||||
@ -192,7 +192,7 @@ band index and some other band properties.
|
||||
Thus Rasterio never has objects with dangling dataset pointers.
|
||||
With Rasterio, bands are represented by a numerical
|
||||
index, starting from 1 (as GDAL does), and are used as arguments to dataset
|
||||
methods. To read the first band of a dataset as a Numpy ``ndarray``, do this.
|
||||
methods. To read the first band of a dataset as a :class:`numpy.ndarray`, do this.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@ -349,7 +349,7 @@ data.
|
||||
[0, 0, 0, ..., 0, 0, 0],
|
||||
[0, 0, 0, ..., 0, 0, 0]], dtype-uint8)
|
||||
|
||||
Arrays for dataset bands can also be had as a Numpy ``masked_array``.
|
||||
Arrays for dataset bands can also be had as a :class:`numpy.ma.MaskedArray`.
|
||||
|
||||
.. code-block:: pycon
|
||||
|
||||
|
||||
@ -128,9 +128,9 @@ def open(fp, mode='r', driver=None, width=None, height=None, count=None,
|
||||
Affine transformation mapping the pixel space to geographic
|
||||
space. Required in 'w' or 'w+' modes, it is ignored in 'r' or
|
||||
'r+' modes.
|
||||
dtype : str or numpy dtype
|
||||
dtype : str or numpy.dtype
|
||||
The data type for bands. For example: 'uint8' or
|
||||
``rasterio.uint16``. Required in 'w' or 'w+' modes, it is
|
||||
:attr:`rasterio.uint16`. Required in 'w' or 'w+' modes, it is
|
||||
ignored in 'r' or 'r+' modes.
|
||||
nodata : int, float, or nan; optional
|
||||
Defines the pixel value to be interpreted as not valid data.
|
||||
@ -334,7 +334,7 @@ def pad(array, transform, pad_width, mode=None, **kwargs):
|
||||
|
||||
Parameters
|
||||
----------
|
||||
array: ndarray
|
||||
array: numpy.ndarray
|
||||
Numpy ndarray, for best results a 2D array
|
||||
transform: Affine transform
|
||||
transform object mapping pixel space to coordinates
|
||||
@ -350,8 +350,7 @@ def pad(array, transform, pad_width, mode=None, **kwargs):
|
||||
|
||||
Notes
|
||||
-----
|
||||
See numpy docs for details on mode and other kwargs:
|
||||
http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.pad.html
|
||||
See :func:`numpy.pad` for details on mode and other kwargs.
|
||||
"""
|
||||
import numpy as np
|
||||
transform = guard_transform(transform)
|
||||
|
||||
@ -25,7 +25,7 @@ def _shapes(image, mask, connectivity, transform):
|
||||
image : array or dataset object opened in 'r' mode or Band or tuple(dataset, bidx)
|
||||
Data type must be one of rasterio.int16, rasterio.int32,
|
||||
rasterio.uint8, rasterio.uint16, or rasterio.float32.
|
||||
mask : numpy ndarray or rasterio Band object
|
||||
mask : numpy.ndarray or rasterio Band object
|
||||
Values of False or 0 will be excluded from feature generation
|
||||
Must evaluate to bool (rasterio.bool_ or rasterio.uint8)
|
||||
connectivity : int
|
||||
@ -160,9 +160,9 @@ def _sieve(image, size, out, mask, connectivity):
|
||||
rasterio.uint16, or rasterio.float32.
|
||||
size : int
|
||||
minimum polygon size (number of pixels) to retain.
|
||||
out : numpy ndarray
|
||||
out : numpy.ndarray
|
||||
Array of same shape and data type as `image` in which to store results.
|
||||
mask : numpy ndarray or rasterio Band object
|
||||
mask : numpy.ndarray or rasterio Band object
|
||||
Values of False or 0 will be excluded from feature generation.
|
||||
Must evaluate to bool (rasterio.bool_ or rasterio.uint8)
|
||||
connectivity : int
|
||||
@ -267,7 +267,7 @@ def _rasterize(shapes, image, transform, all_touched, merge_alg):
|
||||
----------
|
||||
shapes : iterable of (geometry, value) pairs
|
||||
`geometry` is a GeoJSON-like object.
|
||||
image : numpy ndarray
|
||||
image : numpy.ndarray
|
||||
Array in which to store results.
|
||||
transform : Affine transformation object, optional
|
||||
Transformation from pixel coordinates of `image` to the
|
||||
|
||||
@ -318,7 +318,7 @@ cdef bint in_dtype_range(value, dtype):
|
||||
cdef int io_auto(data, GDALRasterBandH band, bint write, int resampling=0) except -1:
|
||||
"""Convenience function to handle IO with a GDAL band.
|
||||
|
||||
:param data: a numpy ndarray
|
||||
:param data: a numpy.ndarray
|
||||
:param band: an instance of GDALGetRasterBand
|
||||
:param write: 1 (True) uses write mode (writes data into band),
|
||||
0 (False) uses read mode (reads band into data)
|
||||
@ -405,7 +405,7 @@ cdef class DatasetReaderBase(DatasetBase):
|
||||
indexes : int or list, optional
|
||||
If `indexes` is a list, the result is a 3D array, but is
|
||||
a 2D array if it is a band index number.
|
||||
out : numpy ndarray, optional
|
||||
out : numpy.ndarray, optional
|
||||
As with Numpy ufuncs, this is an optional reference to an
|
||||
output array into which data will be placed. If the height
|
||||
and width of `out` differ from that of the specified
|
||||
@ -416,7 +416,7 @@ cdef class DatasetReaderBase(DatasetBase):
|
||||
*Note*: the method's return value may be a view on this
|
||||
array. In other words, `out` is likely to be an
|
||||
incomplete representation of the method's results.
|
||||
out_dtype : str or numpy dtype
|
||||
out_dtype : str or numpy.dtype
|
||||
The desired output data type. For example: 'uint8' or
|
||||
rasterio.uint16.
|
||||
out_shape : tuple, optional
|
||||
@ -442,7 +442,7 @@ cdef class DatasetReaderBase(DatasetBase):
|
||||
are not cached.
|
||||
fill_value : scalar
|
||||
Fill value applied in the `boundless=True` case only. Like
|
||||
the fill_value of numpy.ma.MaskedArray, should be value
|
||||
the fill_value of :class:`numpy.ma.MaskedArray`, should be value
|
||||
valid for the dataset's data type.
|
||||
|
||||
Returns
|
||||
@ -708,7 +708,7 @@ cdef class DatasetReaderBase(DatasetBase):
|
||||
indexes : int or list, optional
|
||||
If `indexes` is a list, the result is a 3D array, but is
|
||||
a 2D array if it is a band index number.
|
||||
out : numpy ndarray, optional
|
||||
out : numpy.ndarray, optional
|
||||
As with Numpy ufuncs, this is an optional reference to an
|
||||
output array into which data will be placed. If the height
|
||||
and width of `out` differ from that of the specified
|
||||
@ -944,7 +944,7 @@ cdef class DatasetReaderBase(DatasetBase):
|
||||
|
||||
Parameters
|
||||
----------
|
||||
out : numpy ndarray, optional
|
||||
out : numpy.ndarray, optional
|
||||
As with Numpy ufuncs, this is an optional reference to an
|
||||
output array with the same dimensions and shape into which
|
||||
data will be placed.
|
||||
@ -1327,7 +1327,7 @@ cdef class DatasetWriterBase(DatasetReaderBase):
|
||||
Affine transformation mapping the pixel space to geographic
|
||||
space. Required in 'w' or 'w+' modes, it is ignored in 'r' or
|
||||
'r+' modes.
|
||||
dtype : str or numpy dtype
|
||||
dtype : str or numpy.dtype
|
||||
The data type for bands. For example: 'uint8' or
|
||||
``rasterio.uint16``. Required in 'w' or 'w+' modes, it is
|
||||
ignored in 'r' or 'r+' modes.
|
||||
@ -1640,7 +1640,7 @@ cdef class DatasetWriterBase(DatasetReaderBase):
|
||||
Parameters
|
||||
----------
|
||||
arr : array-like
|
||||
This may be a numpy MaskedArray.
|
||||
This may be a :class:`numpy.ma.MaskedArray`.
|
||||
indexes : int or list, optional
|
||||
Which bands of the dataset to write to. The default is all.
|
||||
window : Window, optional
|
||||
@ -2137,7 +2137,7 @@ cdef class BufferedDatasetWriterBase(DatasetWriterBase):
|
||||
Affine transformation mapping the pixel space to geographic
|
||||
space. Required in 'w' or 'w+' modes, it is ignored in 'r' or
|
||||
'r+' modes.
|
||||
dtype : str or numpy dtype
|
||||
dtype : str or numpy.dtype
|
||||
The data type for bands. For example: 'uint8' or
|
||||
``rasterio.uint16``. Required in 'w' or 'w+' modes, it is
|
||||
ignored in 'r' or 'r+' modes.
|
||||
|
||||
@ -1168,7 +1168,7 @@ cdef class WarpedVRTReaderBase(DatasetReaderBase):
|
||||
If `indexes` is a list, the result is a 3D array, but is
|
||||
a 2D array if it is a band index number.
|
||||
|
||||
out : numpy ndarray, optional
|
||||
out : numpy.ndarray, optional
|
||||
As with Numpy ufuncs, this is an optional reference to an
|
||||
output array into which data will be placed. If the height
|
||||
and width of `out` differ from that of the specified
|
||||
@ -1182,7 +1182,7 @@ cdef class WarpedVRTReaderBase(DatasetReaderBase):
|
||||
|
||||
This parameter cannot be combined with `out_shape`.
|
||||
|
||||
out_dtype : str or numpy dtype
|
||||
out_dtype : str or numpy.dtype
|
||||
The desired output data type. For example: 'uint8' or
|
||||
rasterio.uint16.
|
||||
|
||||
@ -1222,7 +1222,7 @@ cdef class WarpedVRTReaderBase(DatasetReaderBase):
|
||||
|
||||
Returns
|
||||
-------
|
||||
Numpy ndarray or a view on a Numpy ndarray
|
||||
numpy.ndarray or a view on a numpy.ndarray
|
||||
|
||||
Note: as with Numpy ufuncs, an object is returned even if you
|
||||
use the optional `out` argument and the return value shall be
|
||||
|
||||
@ -186,7 +186,7 @@ def can_cast_dtype(values, dtype):
|
||||
Parameters
|
||||
----------
|
||||
values: list-like
|
||||
dtype: numpy dtype or string
|
||||
dtype: numpy.dtype or string
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
||||
@ -41,7 +41,7 @@ def geometry_mask(
|
||||
----------
|
||||
geometries : iterable over geometries (GeoJSON-like objects)
|
||||
out_shape : tuple or list
|
||||
Shape of output numpy ndarray.
|
||||
Shape of output :class:`numpy.ndarray`.
|
||||
transform : Affine transformation object
|
||||
Transformation from pixel coordinates of `source` to the
|
||||
coordinate system of the input `shapes`. See the `transform`
|
||||
@ -56,8 +56,8 @@ def geometry_mask(
|
||||
|
||||
Returns
|
||||
-------
|
||||
numpy ndarray of type 'bool'
|
||||
Result
|
||||
numpy.ndarray :
|
||||
Type is :class:`numpy.bool_`
|
||||
|
||||
Notes
|
||||
-----
|
||||
@ -81,15 +81,15 @@ def shapes(source, mask=None, connectivity=4, transform=IDENTITY):
|
||||
|
||||
Parameters
|
||||
----------
|
||||
source : array, dataset object, Band, or tuple(dataset, bidx)
|
||||
source : numpy.ndarray, dataset object, Band, or tuple(dataset, bidx)
|
||||
Data type must be one of rasterio.int16, rasterio.int32,
|
||||
rasterio.uint8, rasterio.uint16, or rasterio.float32.
|
||||
mask : numpy ndarray or rasterio Band object, optional
|
||||
mask : numpy.ndarray or rasterio Band object, optional
|
||||
Must evaluate to bool (rasterio.bool_ or rasterio.uint8). Values
|
||||
of False or 0 will be excluded from feature generation. Note
|
||||
well that this is the inverse sense from Numpy's, where a mask
|
||||
value of True indicates invalid data in an array. If `source` is
|
||||
a Numpy masked array and `mask` is None, the source's mask will
|
||||
a :class:`numpy.ma.MaskedArray` and `mask` is None, the source's mask will
|
||||
be inverted and used in place of `mask`.
|
||||
connectivity : int, optional
|
||||
Use 4 or 8 pixel connectivity for grouping pixels into features
|
||||
@ -142,9 +142,9 @@ def sieve(source, size, out=None, mask=None, connectivity=4):
|
||||
rasterio.uint16, or rasterio.float32
|
||||
size : int
|
||||
minimum polygon size (number of pixels) to retain.
|
||||
out : numpy ndarray, optional
|
||||
out : numpy.ndarray, optional
|
||||
Array of same shape and data type as `source` in which to store results.
|
||||
mask : numpy ndarray or rasterio Band object, optional
|
||||
mask : numpy.ndarray or rasterio Band object, optional
|
||||
Values of False or 0 will be excluded from feature generation
|
||||
Must evaluate to bool (rasterio.bool_ or rasterio.uint8)
|
||||
connectivity : int, optional
|
||||
@ -152,7 +152,7 @@ def sieve(source, size, out=None, mask=None, connectivity=4):
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : numpy ndarray
|
||||
out : numpy.ndarray
|
||||
Result
|
||||
|
||||
Notes
|
||||
@ -199,11 +199,11 @@ def rasterize(
|
||||
the `default_value` will be used. If `value` is `None` the
|
||||
`fill` value will be used.
|
||||
out_shape : tuple or list with 2 integers
|
||||
Shape of output numpy ndarray.
|
||||
Shape of output :class:`numpy.ndarray`.
|
||||
fill : int or float, optional
|
||||
Used as fill value for all areas not covered by input
|
||||
geometries.
|
||||
out : numpy ndarray, optional
|
||||
out : numpy.ndarray, optional
|
||||
Array of same shape and data type as `source` in which to store
|
||||
results.
|
||||
transform : Affine transformation object, optional
|
||||
@ -222,12 +222,12 @@ def rasterize(
|
||||
the new value will be added to the existing raster.
|
||||
default_value : int or float, optional
|
||||
Used as value for all geometries, if not provided in `shapes`.
|
||||
dtype : rasterio or numpy data type, optional
|
||||
dtype : rasterio or numpy.dtype, optional
|
||||
Used as data type for results, if `out` is not provided.
|
||||
|
||||
Returns
|
||||
-------
|
||||
numpy ndarray
|
||||
numpy.ndarray :
|
||||
If `out` was not None then `out` is returned, it will have been
|
||||
modified in-place. If `out` was None, this will be a new array.
|
||||
|
||||
|
||||
@ -35,11 +35,11 @@ def fillnodata(
|
||||
|
||||
Parameters
|
||||
----------
|
||||
image : numpy ndarray
|
||||
image : numpy.ndarray
|
||||
The source image with holes to be filled. If a MaskedArray, the
|
||||
inverse of its mask will define the pixels to be filled --
|
||||
unless the ``mask`` argument is not None (see below).`
|
||||
mask : numpy ndarray or None
|
||||
mask : numpy.ndarray, optional
|
||||
A mask band indicating which pixels to interpolate. Pixels to
|
||||
interpolate into are indicated by the value 0. Values
|
||||
> 0 indicate areas to use during interpolation. Must be same
|
||||
@ -55,7 +55,7 @@ def fillnodata(
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : numpy ndarray
|
||||
numpy.ndarray :
|
||||
The filled raster array.
|
||||
"""
|
||||
if mask is None and isinstance(image, MaskedArray):
|
||||
|
||||
@ -156,7 +156,7 @@ def mask(dataset, shapes, all_touched=False, invert=False, nodata=None,
|
||||
|
||||
Two elements:
|
||||
|
||||
masked : numpy ndarray or numpy.ma.MaskedArray
|
||||
masked : numpy.ndarray or numpy.ma.MaskedArray
|
||||
Data contained in the raster after applying the mask. If
|
||||
`filled` is `True` and `invert` is `False`, the return will be
|
||||
an array where pixels outside shapes are set to the nodata value
|
||||
|
||||
@ -133,7 +133,7 @@ def merge(
|
||||
nodata: float, optional
|
||||
nodata value to use in output file. If not set, uses the nodata value
|
||||
in the first input raster.
|
||||
dtype: numpy dtype or string
|
||||
dtype: numpy.dtype or string
|
||||
dtype to use in outputfile. If not set, uses the dtype value in the
|
||||
first input raster.
|
||||
precision: int, optional
|
||||
@ -185,7 +185,7 @@ def merge(
|
||||
|
||||
Two elements:
|
||||
|
||||
dest: numpy ndarray
|
||||
dest: numpy.ndarray
|
||||
Contents of all input rasters in single array
|
||||
|
||||
out_transform: affine.Affine()
|
||||
|
||||
@ -53,7 +53,7 @@ def show(source, with_bounds=True, contour=False, contour_label_kws=None,
|
||||
contour_label_kws : dictionary (opt)
|
||||
Keyword arguments for labeling the contours,
|
||||
empty dictionary for no labels.
|
||||
ax : matplotlib axes (opt)
|
||||
ax : matplotlib.axes.Axes, optional
|
||||
Axes to plot on, otherwise uses current axes.
|
||||
title : str, optional
|
||||
Title for the figure.
|
||||
@ -65,16 +65,12 @@ def show(source, with_bounds=True, contour=False, contour_label_kws=None,
|
||||
True, values will be adjusted by the min / max of each band. If
|
||||
False, no adjustment will be applied.
|
||||
**kwargs : key, value pairings optional
|
||||
These will be passed to the matplotlib imshow or contour method
|
||||
depending on contour argument.
|
||||
See full lists at:
|
||||
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imshow.html
|
||||
or
|
||||
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.contour.html
|
||||
These will be passed to the :func:`matplotlib.pyplot.imshow` or
|
||||
:func:`matplotlib.pyplot.contour` contour method depending on contour argument.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ax : matplotlib Axes
|
||||
ax : matplotlib.axes.Axes
|
||||
Axes with plot.
|
||||
"""
|
||||
plt = get_plt()
|
||||
@ -158,12 +154,12 @@ def show(source, with_bounds=True, contour=False, contour_label_kws=None,
|
||||
|
||||
def plotting_extent(source, transform=None):
|
||||
"""Returns an extent in the format needed
|
||||
for matplotlib's imshow (left, right, bottom, top)
|
||||
for :func:`matplotlib.pyplot.imshow` (left, right, bottom, top)
|
||||
instead of rasterio's bounds (left, bottom, right, top)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
source : array or dataset object opened in 'r' mode
|
||||
source : numpy.ndarray or dataset object opened in 'r' mode
|
||||
If array, data in the order rows, columns and optionally bands. If array
|
||||
is band order (bands in the first dimension), use arr[0]
|
||||
transform: Affine, required if source is array
|
||||
@ -238,14 +234,13 @@ def show_hist(source, bins=10, masked=True, title='Histogram', ax=None, label=No
|
||||
should be masked on read.
|
||||
title : str, optional
|
||||
Title for the figure.
|
||||
ax : matplotlib axes (opt)
|
||||
ax : matplotlib.axes.Axes, optional
|
||||
The raster will be added to this axes if passed.
|
||||
label : matplotlib labels (opt)
|
||||
If passed, matplotlib will use this label list.
|
||||
Otherwise, a default label list will be automatically created
|
||||
**kwargs : optional keyword arguments
|
||||
These will be passed to the matplotlib hist method. See full list at:
|
||||
http://matplotlib.org/api/axes_api.html?highlight=imshow#matplotlib.axes.Axes.hist
|
||||
These will be passed to the :meth:`matplotlib.axes.Axes.hist` method.
|
||||
"""
|
||||
plt = get_plt()
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user