mirror of
https://github.com/rasterio/rasterio.git
synced 2025-12-08 17:36:12 +00:00
Recipe for normalizing a stack of data into a consistent grid + CRS.
This commit is contained in:
parent
d9616055a3
commit
b7ffa1c5a0
@ -54,3 +54,116 @@ extract pixels corresponding to its central zoom 9 tile, do the following.
|
||||
with rasterio.open('/tmp/test-tile.tif', 'w', **profile) as dst:
|
||||
dst.write(data)
|
||||
|
||||
|
||||
Normalizing Data to a Consistent Grid
|
||||
=====================================
|
||||
|
||||
A ``WarpedVRT`` can be used to normalize a stack of images with differing
|
||||
projections, bounds, cell sizes, or dimensions against a regular grid
|
||||
in a defined bounding box.
|
||||
|
||||
The `tests/data/RGB.byte.tif` file is in UTM zone 18, so another file in a
|
||||
different CRS is required for demonstration. This command will create a new
|
||||
image with drastically different dimensions and cell size, and reproject to
|
||||
WGS84. As of this writing ``$ rio warp`` implements only a subset of
|
||||
`$ gdalwarp <http://www.gdal.org/gdalwarp.html>`__'s features, so
|
||||
``$ gdalwarp`` must be used to achieve the desired transform:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ gdalwarp \
|
||||
-t_srs EPSG:4326 \
|
||||
-te_srs EPSG:32618 \
|
||||
-te 101985 2673031 339315 2801254 \
|
||||
-ts 200 250 \
|
||||
tests/data/RGB.byte.tif \
|
||||
tests/data/WGS84-RGB.byte.tif
|
||||
|
||||
So, the attributes of these two images drastically differ:
|
||||
|
||||
.. code-block:: console
|
||||
|
||||
$ rio info --shape tests/data/RGB.byte.tif
|
||||
718 791
|
||||
$ rio info --shape tests/data/WGS84-RGB.byte.tif
|
||||
250 200
|
||||
$ rio info --crs tests/data/RGB.byte.tif
|
||||
EPSG:32618
|
||||
$ rio info --crs tests/data/WGS84-RGB.byte.tif
|
||||
EPSG:4326
|
||||
$ rio bounds --bbox --geographic --precision 7 tests/data/RGB.byte.tif
|
||||
[-78.95865, 23.5649912, -76.5749237, 25.5508738]
|
||||
$ rio bounds --bbox --geographic --precision 7 tests/data/WGS84-RGB.byte.tif
|
||||
[-78.9147773, 24.119606, -76.5963819, 25.3192311]
|
||||
|
||||
and this snippet demonstrates how to normalize data to consistent dimensions,
|
||||
CRS, and cell size within a pre-defined bounding box:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from __future__ import division
|
||||
|
||||
import os
|
||||
|
||||
import affine
|
||||
|
||||
import rasterio
|
||||
from rasterio.crs import CRS
|
||||
from rasterio.enums import Resampling
|
||||
from rasterio import shutil as rio_shutil
|
||||
from rasterio.vrt import WarpedVRT
|
||||
|
||||
|
||||
input_files = (
|
||||
# This file is in EPSG:32618
|
||||
'tests/data/RGB.byte.tif',
|
||||
# This file is in EPSG:4326
|
||||
'tests/data/WGS84-RGB.byte.tif'
|
||||
)
|
||||
|
||||
# Destination CRS is Web Mercator
|
||||
dst_crs = CRS.from_epsg(3857)
|
||||
|
||||
# These coordiantes are in Web Mercator
|
||||
dst_bounds = -8744355, 2768114, -8559167, 2908677
|
||||
|
||||
# Output image dimensions
|
||||
dst_height = dst_width = 100
|
||||
|
||||
# Output image transform
|
||||
left, bottom, right, top = dst_bounds
|
||||
xres = (right - left) / dst_width
|
||||
yres = (top - bottom) / dst_height
|
||||
dst_transform = affine.Affine(xres, 0.0, left,
|
||||
0.0, -yres, top)
|
||||
|
||||
vrt_options = {
|
||||
'resampling': Resampling.cubic,
|
||||
'dst_crs': dst_crs,
|
||||
'dst_transform': dst_transform,
|
||||
'dst_height': dst_height,
|
||||
'dst_width': dst_width,
|
||||
}
|
||||
|
||||
for path in input_files:
|
||||
|
||||
with rasterio.open(path) as src:
|
||||
|
||||
with WarpedVRT(src, **vrt_options) as vrt:
|
||||
|
||||
# At this point 'vrt' is a full dataset with dimensions,
|
||||
# CRS, and spatial extent matching 'vrt_options'.
|
||||
|
||||
# Read all data into memory.
|
||||
data = vrt.read()
|
||||
|
||||
# Process the dataset in chunks. Likely not very efficient.
|
||||
for _, window in vrt.block_windows():
|
||||
data = vrt.read(window=window)
|
||||
|
||||
# Dump the aligned data into a new file. A VRT representing
|
||||
# this transformation can also be produced by switching
|
||||
# to the VRT driver.
|
||||
directory, name = os.path.split(path)
|
||||
outfile = os.path.join(directory, 'aligned-{}'.format(name))
|
||||
rio_shutil.copy(vrt, outfile, driver='GTiff')
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user