2014-03-26 11:43:41 -04:00

136 lines
3.8 KiB
JavaScript

var EPSLN = 1.0e-10;
var msfnz = require('../common/msfnz');
var tsfnz = require('../common/tsfnz');
var HALF_PI = Math.PI/2;
var sign = require('../common/sign');
var adjust_lon = require('../common/adjust_lon');
var phi2z = require('../common/phi2z');
exports.init = function() {
// array of: r_maj,r_min,lat1,lat2,c_lon,c_lat,false_east,false_north
//double c_lat; /* center latitude */
//double c_lon; /* center longitude */
//double lat1; /* first standard parallel */
//double lat2; /* second standard parallel */
//double r_maj; /* major axis */
//double r_min; /* minor axis */
//double false_east; /* x offset in meters */
//double false_north; /* y offset in meters */
if (!this.lat2) {
this.lat2 = this.lat1;
} //if lat2 is not defined
if (!this.k0) {
this.k0 = 1;
}
this.x0 = this.x0 || 0;
this.y0 = this.y0 || 0;
// Standard Parallels cannot be equal and on opposite sides of the equator
if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
return;
}
var temp = this.b / this.a;
this.e = Math.sqrt(1 - temp * temp);
var sin1 = Math.sin(this.lat1);
var cos1 = Math.cos(this.lat1);
var ms1 = msfnz(this.e, sin1, cos1);
var ts1 = tsfnz(this.e, this.lat1, sin1);
var sin2 = Math.sin(this.lat2);
var cos2 = Math.cos(this.lat2);
var ms2 = msfnz(this.e, sin2, cos2);
var ts2 = tsfnz(this.e, this.lat2, sin2);
var ts0 = tsfnz(this.e, this.lat0, Math.sin(this.lat0));
if (Math.abs(this.lat1 - this.lat2) > EPSLN) {
this.ns = Math.log(ms1 / ms2) / Math.log(ts1 / ts2);
}
else {
this.ns = sin1;
}
if (isNaN(this.ns)) {
this.ns = sin1;
}
this.f0 = ms1 / (this.ns * Math.pow(ts1, this.ns));
this.rh = this.a * this.f0 * Math.pow(ts0, this.ns);
if (!this.title) {
this.title = "Lambert Conformal Conic";
}
};
// Lambert Conformal conic forward equations--mapping lat,long to x,y
// -----------------------------------------------------------------
exports.forward = function(p) {
var lon = p.x;
var lat = p.y;
// singular cases :
if (Math.abs(2 * Math.abs(lat) - Math.PI) <= EPSLN) {
lat = sign(lat) * (HALF_PI - 2 * EPSLN);
}
var con = Math.abs(Math.abs(lat) - HALF_PI);
var ts, rh1;
if (con > EPSLN) {
ts = tsfnz(this.e, lat, Math.sin(lat));
rh1 = this.a * this.f0 * Math.pow(ts, this.ns);
}
else {
con = lat * this.ns;
if (con <= 0) {
return null;
}
rh1 = 0;
}
var theta = this.ns * adjust_lon(lon - this.long0);
p.x = this.k0 * (rh1 * Math.sin(theta)) + this.x0;
p.y = this.k0 * (this.rh - rh1 * Math.cos(theta)) + this.y0;
return p;
};
// Lambert Conformal Conic inverse equations--mapping x,y to lat/long
// -----------------------------------------------------------------
exports.inverse = function(p) {
var rh1, con, ts;
var lat, lon;
var x = (p.x - this.x0) / this.k0;
var y = (this.rh - (p.y - this.y0) / this.k0);
if (this.ns > 0) {
rh1 = Math.sqrt(x * x + y * y);
con = 1;
}
else {
rh1 = -Math.sqrt(x * x + y * y);
con = -1;
}
var theta = 0;
if (rh1 !== 0) {
theta = Math.atan2((con * x), (con * y));
}
if ((rh1 !== 0) || (this.ns > 0)) {
con = 1 / this.ns;
ts = Math.pow((rh1 / (this.a * this.f0)), con);
lat = phi2z(this.e, ts);
if (lat === -9999) {
return null;
}
}
else {
lat = -HALF_PI;
}
lon = adjust_lon(theta / this.ns + this.long0);
p.x = lon;
p.y = lat;
return p;
};
exports.names = ["Lambert Tangential Conformal Conic Projection", "Lambert_Conformal_Conic", "Lambert_Conformal_Conic_2SP", "lcc"];