proj4js/test/test.js
2017-01-25 14:04:13 -05:00

260 lines
14 KiB
JavaScript

// You can do this in the grunt config for each mocha task, see the `options` config
// Start the main app logic.
function startTests(chai, proj4, testPoints) {
var assert = chai.assert;
proj4.defs([
["EPSG:102018", "+proj=gnom +lat_0=90 +lon_0=0 +x_0=6300000 +y_0=6300000 +ellps=WGS84 +datum=WGS84 +units=m +no_defs"],
["testmerc", "+proj=merc +lon_0=5.937 +lat_ts=45.027 +ellps=sphere +datum=none"],
["testmerc2", "+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +units=m +k=1.0 +nadgrids=@null +no_defs"]
]);
proj4.defs('esriOnline', 'PROJCS["WGS_1984_Web_Mercator_Auxiliary_Sphere",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["Mercator_Auxiliary_Sphere"],PARAMETER["False_Easting",0.0],PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",0.0],PARAMETER["Standard_Parallel_1",0.0],PARAMETER["Auxiliary_Sphere_Type",0.0],UNIT["Meter",1.0]]');
describe('parse', function() {
it('should parse units', function() {
assert.equal(proj4.defs('testmerc2').units, 'm');
});
});
describe('proj2proj', function() {
it('should work transforming from one projection to another', function() {
var sweref99tm = '+proj=utm +zone=33 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs';
var rt90 = '+lon_0=15.808277777799999 +lat_0=0.0 +k=1.0 +x_0=1500000.0 +y_0=0.0 +proj=tmerc +ellps=bessel +units=m +towgs84=414.1,41.3,603.1,-0.855,2.141,-7.023,0 +no_defs';
var rslt = proj4(sweref99tm, rt90).forward([319180, 6399862]);
assert.closeTo(rslt[0], 1271137.9275601401, 0.000001);
assert.closeTo(rslt[1], 6404230.291459564, 0.000001);
});
it('should work with a proj object', function() {
var sweref99tm = proj4('+proj=utm +zone=33 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs');
var rt90 = proj4('+lon_0=15.808277777799999 +lat_0=0.0 +k=1.0 +x_0=1500000.0 +y_0=0.0 +proj=tmerc +ellps=bessel +units=m +towgs84=414.1,41.3,603.1,-0.855,2.141,-7.023,0 +no_defs');
var rslt = proj4(sweref99tm, rt90).forward([319180, 6399862]);
assert.closeTo(rslt[0], 1271137.9275601401, 0.000001);
assert.closeTo(rslt[1], 6404230.291459564, 0.000001);
});
});
describe('proj4', function() {
describe('core', function() {
testPoints.forEach(function(testPoint) {
describe(testPoint.code, function() {
var xyAcc = 2,
llAcc = 6;
if ('acc' in testPoint) {
if ('xy' in testPoint.acc) {
xyAcc = testPoint.acc.xy;
}
if ('ll' in testPoint.acc) {
llAcc = testPoint.acc.ll;
}
}
var xyEPSLN = Math.pow(10, - 1 * xyAcc);
var llEPSLN = Math.pow(10, - 1 * llAcc);
describe('traditional', function() {
it('should work with forwards', function() {
var proj = new proj4.Proj(testPoint.code);
var xy = proj4.transform(proj4.WGS84, proj, proj4.toPoint(testPoint.ll));
assert.closeTo(xy.x, testPoint.xy[0], xyEPSLN, 'x is close');
assert.closeTo(xy.y, testPoint.xy[1], xyEPSLN, 'y is close');
});
it('should work with backwards', function() {
var proj = new proj4.Proj(testPoint.code);
var ll = proj4.transform(proj, proj4.WGS84, proj4.toPoint(testPoint.xy));
assert.closeTo(ll.x, testPoint.ll[0], llEPSLN, 'lng is close');
assert.closeTo(ll.y, testPoint.ll[1], llEPSLN, 'lat is close');
});
});
describe('new method 2 param', function() {
it('shortcut method should work with an array', function() {
var xy = proj4(testPoint.code, testPoint.ll);
assert.closeTo(xy[0], testPoint.xy[0], xyEPSLN, 'x is close');
assert.closeTo(xy[1], testPoint.xy[1], xyEPSLN, 'y is close');
});
it('shortcut method should work with an object', function() {
var pt = {
x: testPoint.ll[0],
y: testPoint.ll[1]
};
var xy = proj4(testPoint.code, pt);
assert.closeTo(xy.x, testPoint.xy[0], xyEPSLN, 'x is close');
assert.closeTo(xy.y, testPoint.xy[1], xyEPSLN, 'y is close');
});
it('shortcut method should work with a point object', function() {
var pt = proj4.toPoint(testPoint.ll);
var xy = proj4(testPoint.code, pt);
assert.closeTo(xy.x, testPoint.xy[0], xyEPSLN, 'x is close');
assert.closeTo(xy.y, testPoint.xy[1], xyEPSLN, 'y is close');
});
});
describe('new method 3 param', function() {
it('shortcut method should work with an array', function() {
var xy = proj4(proj4.WGS84, testPoint.code, testPoint.ll);
assert.closeTo(xy[0], testPoint.xy[0], xyEPSLN, 'x is close');
assert.closeTo(xy[1], testPoint.xy[1], xyEPSLN, 'y is close');
});
it('shortcut method should work with an object', function() {
var pt = {
x: testPoint.ll[0],
y: testPoint.ll[1]
};
var xy = proj4(proj4.WGS84, testPoint.code, pt);
assert.closeTo(xy.x, testPoint.xy[0], xyEPSLN, 'x is close');
assert.closeTo(xy.y, testPoint.xy[1], xyEPSLN, 'y is close');
});
it('shortcut method should work with a point object', function() {
var pt = proj4.toPoint(testPoint.ll);
var xy = proj4(proj4.WGS84, testPoint.code, pt);
assert.closeTo(xy.x, testPoint.xy[0], xyEPSLN, 'x is close');
assert.closeTo(xy.y, testPoint.xy[1], xyEPSLN, 'y is close');
});
});
describe('new method 3 param other way', function() {
it('shortcut method should work with an array', function() {
var ll = proj4(testPoint.code, proj4.WGS84, testPoint.xy);
assert.closeTo(ll[0], testPoint.ll[0], llEPSLN, 'x is close');
assert.closeTo(ll[1], testPoint.ll[1], llEPSLN, 'y is close');
});
it('shortcut method should work with an object', function() {
var pt = {
x: testPoint.xy[0],
y: testPoint.xy[1]
};
var ll = proj4(testPoint.code, proj4.WGS84, pt);
assert.closeTo(ll.x, testPoint.ll[0], llEPSLN, 'x is close');
assert.closeTo(ll.y, testPoint.ll[1], llEPSLN, 'y is close');
});
it('shortcut method should work with a point object', function() {
var pt = proj4.toPoint(testPoint.xy);
var ll = proj4(testPoint.code, proj4.WGS84, pt);
assert.closeTo(ll.x, testPoint.ll[0], llEPSLN, 'x is close');
assert.closeTo(ll.y, testPoint.ll[1], llEPSLN, 'y is close');
});
});
describe('1 param', function() {
it('forwards', function() {
var xy = proj4(testPoint.code).forward(testPoint.ll);
assert.closeTo(xy[0], testPoint.xy[0], xyEPSLN, 'x is close');
assert.closeTo(xy[1], testPoint.xy[1], xyEPSLN, 'y is close');
});
it('inverse', function() {
var ll = proj4(testPoint.code).inverse(testPoint.xy);
assert.closeTo(ll[0], testPoint.ll[0], llEPSLN, 'x is close');
assert.closeTo(ll[1], testPoint.ll[1], llEPSLN, 'y is close');
});
});
describe('proj object', function() {
it('should work with a 2 element array', function() {
var xy = proj4(new proj4.Proj(testPoint.code), testPoint.ll);
assert.closeTo(xy[0], testPoint.xy[0], xyEPSLN, 'x is close');
assert.closeTo(xy[1], testPoint.xy[1], xyEPSLN, 'y is close');
});
it('should work on element', function() {
var xy = proj4(new proj4.Proj(testPoint.code)).forward(testPoint.ll);
assert.closeTo(xy[0], testPoint.xy[0], xyEPSLN, 'x is close');
assert.closeTo(xy[1], testPoint.xy[1], xyEPSLN, 'y is close');
});
it('should work 3 element ponit object', function() {
var pt = proj4.toPoint(testPoint.xy);
var ll = proj4(new proj4.Proj(testPoint.code), proj4.WGS84, pt);
assert.closeTo(ll.x, testPoint.ll[0], llEPSLN, 'x is close');
assert.closeTo(ll.y, testPoint.ll[1], llEPSLN, 'y is close');
});
});
});
});
});
describe('defs', function() {
assert.equal(proj4.defs('testmerc'), proj4.defs['testmerc']);
proj4.defs('foo', '+proj=merc +lon_0=5.937 +lat_ts=45.027 +ellps=sphere +datum=none');
assert.typeOf(proj4.defs['foo'], 'object');
proj4.defs('urn:x-ogc:def:crs:EPSG:4326', proj4.defs('EPSG:4326'));
assert.strictEqual(proj4.defs['urn:x-ogc:def:crs:EPSG:4326'], proj4.defs['EPSG:4326']);
describe('wkt', function() {
it('should provide the correct conversion factor for WKT GEOGCS projections', function() {
proj4.defs('EPSG:4269', 'GEOGCS["NAD83",DATUM["North_American_Datum_1983",SPHEROID["GRS 1980",6378137,298.257222101,AUTHORITY["EPSG","7019"]],AUTHORITY["EPSG","6269"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4269"]]');
assert.equal(proj4.defs['EPSG:4269'].to_meter, 6378137*0.01745329251994328);
proj4.defs('EPSG:4279', 'GEOGCS["OS(SN)80",DATUM["OS_SN_1980",SPHEROID["Airy 1830",6377563.396,299.3249646,AUTHORITY["EPSG","7001"]],AUTHORITY["EPSG","6279"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4279"]]');
assert.equal(proj4.defs['EPSG:4279'].to_meter, 6377563.396*0.01745329251994328);
});
});
});
describe('errors', function() {
it('should throw an error for an unknown ref', function() {
assert.throws(function() {
new proj4.Proj('fake one');
}, 'fake one', 'should work');
});
});
describe('utility', function() {
it('should have MGRS available in the proj4.util namespace', function() {
assert.typeOf(proj4.mgrs, "object", "MGRS available in the proj4.util namespace");
});
it('should have fromMGRS method added to proj4.Point prototype', function() {
assert.typeOf(proj4.Point.fromMGRS, "function", "fromMGRS method added to proj4.Point prototype");
});
it('should have toMGRS method added to proj4.Point prototype', function() {
assert.typeOf(proj4.Point.prototype.toMGRS, "function", "toMGRS method added to proj4.Point prototype");
});
describe('First MGRS set', function() {
var mgrs = "33UXP04";
var point = proj4.Point.fromMGRS(mgrs);
it('Longitude of point from MGRS correct.', function() {
assert.equal(point.x.toPrecision(7), "16.41450", "Longitude of point from MGRS correct.");
});
it('Latitude of point from MGRS correct.', function() {
assert.equal(point.y.toPrecision(7), "48.24949", "Latitude of point from MGRS correct.");
});
it('MGRS reference with highest accuracy correct.', function() {
assert.equal(point.toMGRS(), "33UXP0500444998", "MGRS reference with highest accuracy correct.");
});
it('MGRS reference with 1-digit accuracy correct.', function() {
assert.equal(point.toMGRS(1), mgrs, "MGRS reference with 1-digit accuracy correct.");
});
});
describe('Second MGRS set', function() {
var mgrs = "24XWT783908"; // near UTM zone border, so there are two ways to reference this
var point = proj4.Point.fromMGRS(mgrs);
it("Longitude of point from MGRS correct.", function() {
assert.equal(point.x.toPrecision(7), "-32.66433", "Longitude of point from MGRS correct.");
});
it("Latitude of point from MGRS correct.", function() {
assert.equal(point.y.toPrecision(7), "83.62778", "Latitude of point from MGRS correct.");
});
it("MGRS reference with 3-digit accuracy correct.", function() {
assert.equal(point.toMGRS(3), "25XEN041865", "MGRS reference with 3-digit accuracy correct.");
});
});
describe('Defs and Datum definition', function() {
proj4.defs("EPSG:5514", "+proj=krovak +lat_0=49.5 +lon_0=24.83333333333333 +alpha=30.28813972222222 +k=0.9999 +x_0=0 +y_0=0 +ellps=bessel +pm=greenwich +units=m +no_defs +towgs84=570.8,85.7,462.8,4.998,1.587,5.261,3.56");
var point = proj4.transform(proj4.Proj("WGS84"), proj4.Proj("EPSG:5514"),
proj4.toPoint([12.806988, 49.452262]));
it("Longitude of point from WGS84 correct.", function() {
assert.equal(point.x.toPrecision(8), "-868208.61", "Longitude of point from WGS84 correct.");
});
it("Latitude of point from WGS84 correct.", function() {
assert.equal(point.y.toPrecision(9), "-1095793.64", "Latitude of point from WGS84 correct.");
});
var point2 = proj4.transform(proj4.Proj("WGS84"), proj4.Proj("EPSG:5514"),
proj4.toPoint([12.806988, 49.452262]));
it("Longitude of point from WGS84 with second call for EPSG:5514 correct.", function() {
assert.equal(point2.x.toPrecision(8), "-868208.61", "Longitude of point from WGS84 correct.");
});
it("Latitude of point from WGS84 with second call for EPSG:5514 correct.", function() {
assert.equal(point2.y.toPrecision(9), "-1095793.64", "Latitude of point from WGS84 correct.");
});
});
});
});
}
if(typeof process !== 'undefined'&&process.toString() === '[object process]'){
(function(){
startTests(require('chai'), require('../dist/proj4-src'), require('./testData'));
})();
}