pointcloud/lib/pc_bytes.c
2015-04-30 13:31:13 +02:00

1699 lines
37 KiB
C

/***********************************************************************
* pc_bytes.c
*
* Support for "dimensional compression", which is a catch-all
* term for applying compression separately on each dimension
* of a PCPATCH collection of PCPOINTS.
*
* Depending on the character of the data, one of these schemes
* will be used:
*
* - run-length encoding
* - significant-bit removal
* - deflate
*
* PgSQL Pointcloud is free and open source software provided
* by the Government of Canada
* Copyright (c) 2013 Natural Resources Canada
*
***********************************************************************/
#include <stdarg.h>
#include <assert.h>
#include <float.h>
#include "pc_api_internal.h"
#include "zlib.h"
void
pc_bytes_free(PCBYTES pcb)
{
if ( ! pcb.readonly )
pcfree(pcb.bytes);
}
int pc_bytes_empty(const PCBYTES *pcb)
{
return pcb->npoints == 0 || pcb->bytes == NULL || pcb->size == 0;
}
PCBYTES
pc_bytes_make(const PCDIMENSION *dim, uint32_t npoints)
{
PCBYTES pcb;
pcb.size = dim->size * npoints;
pcb.bytes = pcalloc(pcb.size);
pcb.npoints = npoints;
pcb.interpretation = dim->interpretation;
pcb.compression = PC_DIM_NONE;
pcb.readonly = PC_FALSE;
return pcb;
}
static PCBYTES
pc_bytes_clone(PCBYTES pcb)
{
PCBYTES pcbnew = pcb;
if ( ! pc_bytes_empty(&pcb) )
{
pcbnew.bytes = pcalloc(pcb.size);
memcpy(pcbnew.bytes, pcb.bytes, pcb.size);
}
pcbnew.readonly = PC_FALSE;
return pcbnew;
}
PCBYTES
pc_bytes_encode(PCBYTES pcb, int compression)
{
PCBYTES epcb;
switch ( compression )
{
case PC_DIM_RLE:
{
epcb = pc_bytes_run_length_encode(pcb);
break;
}
case PC_DIM_SIGBITS:
{
epcb = pc_bytes_sigbits_encode(pcb);
break;
}
case PC_DIM_ZLIB:
{
epcb = pc_bytes_zlib_encode(pcb);
break;
}
case PC_DIM_NONE:
{
epcb = pc_bytes_clone(pcb);
break;
}
default:
{
pcerror("%s: Uh oh", __func__);
}
}
return epcb;
}
PCBYTES
pc_bytes_decode(PCBYTES epcb)
{
PCBYTES pcb;
switch ( epcb.compression )
{
case PC_DIM_RLE:
{
pcb = pc_bytes_run_length_decode(epcb);
break;
}
case PC_DIM_SIGBITS:
{
pcb = pc_bytes_sigbits_decode(epcb);
break;
}
case PC_DIM_ZLIB:
{
pcb = pc_bytes_zlib_decode(epcb);
break;
}
case PC_DIM_NONE:
{
pcb = pc_bytes_clone(epcb);
break;
}
default:
{
pcerror("%s: Uh oh", __func__);
}
}
return pcb;
}
/**
* How many distinct runs of values are there in this array?
* One? Two? Five? Great news for run-length encoding!
* N? Not so great news.
*/
uint32_t
pc_bytes_run_count(const PCBYTES *pcb)
{
int i;
const uint8_t *ptr0;
const uint8_t *ptr1;
size_t size = pc_interpretation_size(pcb->interpretation);
uint32_t runcount = 1;
for ( i = 1; i < pcb->npoints; i++ )
{
ptr0 = pcb->bytes + (i-1)*size;
ptr1 = pcb->bytes + i*size;
if ( memcmp(ptr0, ptr1, size) != 0 )
{
runcount++;
}
}
return runcount;
}
/**
* Take the uncompressed bytes and run-length encode (RLE) them.
* Structure of RLE array as:
* <uint8> number of elements
* <val> value
* ...
*/
PCBYTES
pc_bytes_run_length_encode(const PCBYTES pcb)
{
int i;
uint8_t *buf, *bufptr;
const uint8_t *bytesptr;
const uint8_t *runstart;
uint8_t *bytes_rle;
size_t size = pc_interpretation_size(pcb.interpretation);
uint8_t runlength = 1;
PCBYTES pcbout = pcb;
/* Allocate more size than we need (worst case: n elements, n runs) */
buf = pcalloc(pcb.npoints*size + sizeof(uint8_t)*pcb.npoints);
bufptr = buf;
/* First run starts at the start! */
runstart = pcb.bytes;
for ( i = 1; i <= pcb.npoints; i++ )
{
bytesptr = pcb.bytes + i*size;
/* Run continues... */
if ( i < pcb.npoints && runlength < 255 && memcmp(runstart, bytesptr, size) == 0 )
{
runlength++;
}
else
{
/* Write # elements in the run */
*bufptr = runlength;
bufptr += 1;
/* Write element value */
memcpy(bufptr, runstart, size);
bufptr += size;
/* Advance read head */
runstart = bytesptr;
runlength = 1;
}
}
/* Length of buffer */
pcbout.size = (bufptr - buf);
/* Write out shortest buffer possible */
bytes_rle = pcalloc(pcbout.size);
memcpy(bytes_rle, buf, pcbout.size);
pcfree(buf);
/* We're going to replace the current buffer */
pcbout.bytes = bytes_rle;
pcbout.compression = PC_DIM_RLE;
pcbout.readonly = PC_FALSE;
return pcbout;
}
/**
* Take the compressed bytes and run-length dencode (RLE) them.
* Structure of RLE array is:
* <uint8> number of elements
* <val> value
* ...
*/
PCBYTES
pc_bytes_run_length_decode(const PCBYTES pcb)
{
int i, n;
uint8_t *bytes;
uint8_t *bytes_ptr;
const uint8_t *bytes_rle_ptr = pcb.bytes;
const uint8_t *bytes_rle_end = pcb.bytes + pcb.size;
size_t size = pc_interpretation_size(pcb.interpretation);
size_t size_out;
uint32_t npoints = 0;
PCBYTES pcbout = pcb;
assert(pcb.compression == PC_DIM_RLE);
/* Count up how big our output is. */
while( bytes_rle_ptr < bytes_rle_end )
{
npoints += *bytes_rle_ptr;
bytes_rle_ptr += 1 + size;
}
assert(npoints == pcb.npoints);
/* Alocate output and fill it up */
size_out = size * npoints;
bytes = pcalloc(size_out);
bytes_ptr = bytes;
bytes_rle_ptr = pcb.bytes;
while ( bytes_rle_ptr < bytes_rle_end )
{
n = *bytes_rle_ptr;
bytes_rle_ptr += 1;
for ( i = 0; i < n; i++ )
{
memcpy(bytes_ptr, bytes_rle_ptr, size);
bytes_ptr += size;
}
bytes_rle_ptr += size;
}
pcbout.compression = PC_DIM_NONE;
pcbout.size = size_out;
pcbout.bytes = bytes;
pcbout.readonly = PC_FALSE;
return pcbout;
}
/**
* RLE bytes consist of a <byte:count><word:value><byte:count><word:value> pattern
* so we can hope from word to word and flip each one in place.
*/
static PCBYTES
pc_bytes_run_length_flip_endian(PCBYTES pcb)
{
int n;
uint8_t *bytes_ptr = pcb.bytes;
uint8_t *end_ptr = pcb.bytes + pcb.size;
uint8_t tmp;
size_t size = pc_interpretation_size(pcb.interpretation);
assert(pcb.compression == PC_DIM_RLE);
assert(pcb.npoints > 0);
/* If the type isn't multibyte, it doesn't need flipping */
if ( size < 2 )
return pcb;
/* Don't try to modify read-only memory, make some fresh memory */
if ( pcb.readonly == PC_TRUE )
{
uint8_t *oldbytes = pcb.bytes;
pcb.bytes = pcalloc(pcb.size);
memcpy(pcb.bytes, oldbytes, pcb.size);
pcb.readonly = PC_FALSE;
}
bytes_ptr++; /* Advance past count */
/* Visit each entry and flip the word, skip the count */
while( bytes_ptr < end_ptr )
{
/* Swap the bytes in a way that makes sense for this word size */
for ( n = 0; n < size/2; n++ )
{
tmp = bytes_ptr[n];
bytes_ptr[n] = bytes_ptr[size-n-1];
bytes_ptr[size-n-1] = tmp;
}
/* Move past this word */
bytes_ptr += size;
/* Advance past next count */
bytes_ptr++;
}
return pcb;
}
uint8_t
pc_bytes_sigbits_count_8(const PCBYTES *pcb, uint32_t *nsigbits)
{
static uint8_t nbits = 8;
uint8_t *bytes = (uint8_t*)(pcb->bytes);
uint8_t elem_and = bytes[0];
uint8_t elem_or = bytes[0];
uint32_t commonbits = nbits;
int i;
for ( i = 0; i < pcb->npoints; i++ )
{
elem_and &= bytes[i];
elem_or |= bytes[i];
}
while ( elem_and != elem_or )
{
elem_and >>= 1;
elem_or >>= 1;
commonbits -= 1;
}
elem_and <<= nbits - commonbits;
if ( nsigbits ) *nsigbits = commonbits;
return elem_and;
}
uint16_t
pc_bytes_sigbits_count_16(const PCBYTES *pcb, uint32_t *nsigbits)
{
static int nbits = 16;
uint16_t *bytes = (uint16_t*)(pcb->bytes);
uint16_t elem_and = bytes[0];
uint16_t elem_or = bytes[0];
uint32_t commonbits = nbits;
int i;
for ( i = 0; i < pcb->npoints; i++ )
{
elem_and &= bytes[i];
elem_or |= bytes[i];
}
while ( elem_and != elem_or )
{
elem_and >>= 1;
elem_or >>= 1;
commonbits -= 1;
}
elem_and <<= nbits - commonbits;
if ( nsigbits ) *nsigbits = commonbits;
return elem_and;
}
uint32_t
pc_bytes_sigbits_count_32(const PCBYTES *pcb, uint32_t *nsigbits)
{
static int nbits = 32;
uint32_t *bytes = (uint32_t*)(pcb->bytes);
uint32_t elem_and = bytes[0];
uint32_t elem_or = bytes[0];
uint32_t commonbits = nbits;
int i;
for ( i = 0; i < pcb->npoints; i++ )
{
elem_and &= bytes[i];
elem_or |= bytes[i];
}
while ( elem_and != elem_or )
{
elem_and >>= 1;
elem_or >>= 1;
commonbits -= 1;
}
elem_and <<= nbits - commonbits;
if ( nsigbits ) *nsigbits = commonbits;
return elem_and;
}
uint64_t
pc_bytes_sigbits_count_64(const PCBYTES *pcb, uint32_t *nsigbits)
{
static int nbits = 64;
uint64_t *bytes = (uint64_t*)(pcb->bytes);
uint64_t elem_and = bytes[0];
uint64_t elem_or = bytes[0];
uint32_t commonbits = nbits;
int i;
for ( i = 0; i < pcb->npoints; i++ )
{
elem_and &= bytes[i];
elem_or |= bytes[i];
}
while ( elem_and != elem_or )
{
elem_and >>= 1;
elem_or >>= 1;
commonbits -= 1;
}
elem_and <<= nbits - commonbits;
if ( nsigbits ) *nsigbits = commonbits;
return elem_and;
}
/**
* How many bits are shared by all elements of this array?
*/
uint32_t
pc_bytes_sigbits_count(const PCBYTES *pcb)
{
size_t size = pc_interpretation_size(pcb->interpretation);
uint32_t nbits = -1;
switch ( size )
{
case 1: /* INT8, UINT8 */
pc_bytes_sigbits_count_8(pcb, &nbits);
break;
case 2: /* INT16, UINT16 */
pc_bytes_sigbits_count_16(pcb, &nbits);
break;
case 4: /* INT32, UINT32 */
pc_bytes_sigbits_count_32(pcb, &nbits);
break;
case 8: /* DOUBLE, INT64, UINT64 */
pc_bytes_sigbits_count_64(pcb, &nbits);
break;
default:
pcerror("%s: cannot handle interpretation %d", __func__, pcb->interpretation);
return -1;
}
return nbits;
}
/**
* Encoded array:
* <uint8> number of bits per unique section
* <uint8> common bits for the array
* [n_bits]... unique bits packed in
* Size of encoded array comes out in ebytes_size.
*/
PCBYTES
pc_bytes_sigbits_encode_8(const PCBYTES pcb, uint8_t commonvalue, uint8_t commonbits)
{
int i;
int shift;
uint8_t *bytes = (uint8_t*)(pcb.bytes);
/* How wide are our words? */
static int bitwidth = 8;
/* How wide are our unique values? */
int nbits = bitwidth - commonbits;
/* Size of output buffer (#bits/8+1remainder+2metadata) */
size_t size_out = (nbits * pcb.npoints / 8) + 3;
uint8_t *bytes_out = pcalloc(size_out);
/* Use this to zero out the parts that are common */
uint8_t mask = (0xFF >> commonbits);
/* Write head */
uint8_t *byte_ptr = bytes_out;
/* What bit are we writing to now? */
int bit = bitwidth;
/* Write to... */
PCBYTES pcbout = pcb;
/* Number of unique bits goes up front */
*byte_ptr = nbits;
byte_ptr++;
/* The common value we'll add the unique values to */
*byte_ptr = commonvalue;
byte_ptr++;
/* All the values are the same... */
if ( bitwidth == commonbits )
{
pcbout.size = size_out;
pcbout.bytes = bytes_out;
pcbout.compression = PC_DIM_SIGBITS;
pcbout.readonly = PC_FALSE;
return pcbout;
}
for ( i = 0; i < pcb.npoints; i++ )
{
uint8_t val = bytes[i];
/* Clear off common parts */
val &= mask;
/* How far to move unique parts to get to write head? */
shift = bit - nbits;
/* If positive, we can fit this part into the current word */
if ( shift >= 0 )
{
val <<= shift;
*byte_ptr |= val;
bit -= nbits;
if ( bit <= 0 )
{
bit = bitwidth;
byte_ptr++;
}
}
/* If negative, then we need to split this part across words */
else
{
/* First the bit into the current word */
uint8_t v = val;
int s = abs(shift);
v >>= s;
*byte_ptr |= v;
/* The reset to write the next word */
bit = bitwidth;
byte_ptr++;
v = val;
shift = bit - s;
/* But only those parts we didn't already write */
v <<= shift;
*byte_ptr |= v;
bit -= s;
}
}
pcbout.size = size_out;
pcbout.bytes = bytes_out;
pcbout.compression = PC_DIM_SIGBITS;
pcbout.readonly = PC_FALSE;
return pcbout;
}
/**
* Encoded array:
* <uint16> number of bits per unique section
* <uint16> common bits for the array
* [n_bits]... unique bits packed in
* Size of encoded array comes out in ebytes_size.
*/
PCBYTES
pc_bytes_sigbits_encode_16(const PCBYTES pcb, uint16_t commonvalue, uint8_t commonbits)
{
int i;
int shift;
uint16_t *bytes = (uint16_t*)(pcb.bytes);
/* How wide are our words? */
static int bitwidth = 16;
/* How wide are our unique values? */
int nbits = bitwidth - commonbits;
/* Size of output buffer (#bits/8+1remainder+4metadata) */
size_t size_out_raw = (nbits * pcb.npoints / 8) + 1 + 4;
/* Make sure buffer is size to hold all our words */
size_t size_out = size_out_raw + (size_out_raw % 2);
uint8_t *bytes_out = pcalloc(size_out);
/* Use this to zero out the parts that are common */
uint16_t mask = (0xFFFF >> commonbits);
/* Write head */
uint16_t *byte_ptr = (uint16_t*)(bytes_out);
/* What bit are we writing to now? */
int bit = bitwidth;
/* Write to... */
PCBYTES pcbout = pcb;
/* Number of unique bits goes up front */
*byte_ptr = nbits;
byte_ptr++;
/* The common value we'll add the unique values to */
*byte_ptr = commonvalue;
byte_ptr++;
/* All the values are the same... */
if ( bitwidth == commonbits )
{
pcbout.size = size_out;
pcbout.bytes = bytes_out;
pcbout.compression = PC_DIM_SIGBITS;
pcbout.readonly = PC_FALSE;
return pcbout;
}
for ( i = 0; i < pcb.npoints; i++ )
{
uint16_t val = bytes[i];
/* Clear off common parts */
val &= mask;
/* How far to move unique parts to get to write head? */
shift = bit - nbits;
/* If positive, we can fit this part into the current word */
if ( shift >= 0 )
{
val <<= shift;
*byte_ptr |= val;
bit -= nbits;
if ( bit <= 0 )
{
bit = bitwidth;
byte_ptr++;
}
}
/* If negative, then we need to split this part across words */
else
{
/* First the bit into the current word */
uint16_t v = val;
int s = abs(shift);
v >>= s;
*byte_ptr |= v;
/* The reset to write the next word */
bit = bitwidth;
byte_ptr++;
v = val;
shift = bit - s;
/* But only those parts we didn't already write */
v <<= shift;
*byte_ptr |= v;
bit -= s;
}
}
pcbout.size = size_out;
pcbout.bytes = bytes_out;
pcbout.compression = PC_DIM_SIGBITS;
pcbout.readonly = PC_FALSE;
return pcbout;
}
/**
* Encoded array:
* <uint32> number of bits per unique section
* <uint32> common bits for the array
* [n_bits]... unique bits packed in
* Size of encoded array comes out in ebytes_size.
*/
PCBYTES
pc_bytes_sigbits_encode_32(const PCBYTES pcb, uint32_t commonvalue, uint8_t commonbits)
{
int i;
int shift;
uint32_t *bytes = (uint32_t*)(pcb.bytes);
/* How wide are our words? */
static int bitwidth = 32;
/* How wide are our unique values? */
int nbits = bitwidth - commonbits;
/* Size of output buffer (#bits/8+1remainder+8metadata) */
size_t size_out_raw = (nbits * pcb.npoints / 8) + 1 + 8;
size_t size_out = size_out_raw + (4 - (size_out_raw % 4));
uint8_t *bytes_out = pcalloc(size_out);
/* Use this to zero out the parts that are common */
uint32_t mask = (0xFFFFFFFF >> commonbits);
/* Write head */
uint32_t *byte_ptr = (uint32_t*)bytes_out;
/* What bit are we writing to now? */
int bit = bitwidth;
/* Write to... */
PCBYTES pcbout = pcb;
/* Number of unique bits goes up front */
*byte_ptr = nbits;
byte_ptr++;
/* The common value we'll add the unique values to */
*byte_ptr = commonvalue;
byte_ptr++;
/* All the values are the same... */
if ( bitwidth == commonbits )
{
pcbout.size = size_out;
pcbout.bytes = bytes_out;
pcbout.compression = PC_DIM_SIGBITS;
pcbout.readonly = PC_FALSE;
return pcbout;
}
for ( i = 0; i < pcb.npoints; i++ )
{
uint32_t val = bytes[i];
/* Clear off common parts */
val &= mask;
/* How far to move unique parts to get to write head? */
shift = bit - nbits;
/* If positive, we can fit this part into the current word */
if ( shift >= 0 )
{
val <<= shift;
*byte_ptr |= val;
bit -= nbits;
if ( bit <= 0 )
{
bit = bitwidth;
byte_ptr++;
}
}
/* If negative, then we need to split this part across words */
else
{
/* First the bit into the current word */
uint32_t v = val;
int s = abs(shift);
v >>= s;
*byte_ptr |= v;
/* The reset to write the next word */
bit = bitwidth;
byte_ptr++;
v = val;
shift = bit - s;
/* But only those parts we didn't already write */
v <<= shift;
*byte_ptr |= v;
bit -= s;
}
}
pcbout.size = size_out;
pcbout.bytes = bytes_out;
pcbout.compression = PC_DIM_SIGBITS;
pcbout.readonly = PC_FALSE;
return pcbout;
}
/**
* Encoded array:
* <uint64> number of bits per unique section
* <uint64> common bits for the array
* [n_bits]... unique bits packed in
* Size of encoded array comes out in ebytes_size.
*/
PCBYTES
pc_bytes_sigbits_encode_64(const PCBYTES pcb, uint64_t commonvalue, uint8_t commonbits)
{
int i;
int shift;
uint64_t *bytes = (uint64_t*)(pcb.bytes);
/* How wide are our words? */
static int bitwidth = 64;
/* How wide are our unique values? */
int nbits = bitwidth - commonbits;
/* Size of output buffer (#bits/8+1remainder+16metadata) */
size_t size_out_raw = (nbits * pcb.npoints / 8) + 1 + 16;
size_t size_out = size_out_raw + (8 - (size_out_raw % 8));
uint8_t *bytes_out = pcalloc(size_out);
/* Use this to zero out the parts that are common */
uint64_t mask = (0xFFFFFFFFFFFFFFFF >> commonbits);
/* Write head */
uint64_t *byte_ptr = (uint64_t*)bytes_out;
/* What bit are we writing to now? */
int bit = bitwidth;
/* Write to... */
PCBYTES pcbout = pcb;
/* Number of unique bits goes up front */
*byte_ptr = nbits;
byte_ptr++;
/* The common value we'll add the unique values to */
*byte_ptr = commonvalue;
byte_ptr++;
/* All the values are the same... */
if ( bitwidth == commonbits )
{
pcbout.size = size_out;
pcbout.bytes = bytes_out;
pcbout.compression = PC_DIM_SIGBITS;
pcbout.readonly = PC_FALSE;
return pcbout;
}
for ( i = 0; i < pcb.npoints; i++ )
{
uint64_t val = bytes[i];
/* Clear off common parts */
val &= mask;
/* How far to move unique parts to get to write head? */
shift = bit - nbits;
/* If positive, we can fit this part into the current word */
if ( shift >= 0 )
{
val <<= shift;
*byte_ptr |= val;
bit -= nbits;
if ( bit <= 0 )
{
bit = bitwidth;
byte_ptr++;
}
}
/* If negative, then we need to split this part across words */
else
{
/* First the bit into the current word */
uint64_t v = val;
int s = abs(shift);
v >>= s;
*byte_ptr |= v;
/* The reset to write the next word */
bit = bitwidth;
byte_ptr++;
v = val;
shift = bit - s;
/* But only those parts we didn't already write */
v <<= shift;
*byte_ptr |= v;
bit -= s;
}
}
pcbout.size = size_out;
pcbout.bytes = bytes_out;
pcbout.compression = PC_DIM_SIGBITS;
pcbout.readonly = PC_FALSE;
return pcbout;
}
/**
* Convert a raw byte array into with common bits stripped and the
* remaining bits packed in.
* <uint8|uint16|uint32> number of bits per unique section
* <uint8|uint16|uint32> common bits for the array
* [n_bits]... unique bits packed in
* Size of encoded array comes out in ebytes_size.
*/
PCBYTES
pc_bytes_sigbits_encode(const PCBYTES pcb)
{
size_t size = pc_interpretation_size(pcb.interpretation);
uint32_t nbits;
switch ( size )
{
case 1:
{
uint8_t commonvalue = pc_bytes_sigbits_count_8(&pcb, &nbits);
return pc_bytes_sigbits_encode_8(pcb, commonvalue, nbits);
}
case 2:
{
uint16_t commonvalue = pc_bytes_sigbits_count_16(&pcb, &nbits);
return pc_bytes_sigbits_encode_16(pcb, commonvalue, nbits);
}
case 4:
{
uint32_t commonvalue = pc_bytes_sigbits_count_32(&pcb, &nbits);
return pc_bytes_sigbits_encode_32(pcb, commonvalue, nbits);
}
case 8:
{
uint64_t commonvalue = pc_bytes_sigbits_count_64(&pcb, &nbits);
return pc_bytes_sigbits_encode_64(pcb, commonvalue, nbits);
}
default:
{
pcerror("%s: bits_encode cannot handle interpretation %d", __func__, pcb.interpretation);
}
}
pcerror("Uh Oh");
return pcb;
}
static PCBYTES
pc_bytes_sigbits_flip_endian(const PCBYTES pcb)
{
int n;
uint8_t tmp1, tmp2;
size_t size = pc_interpretation_size(pcb.interpretation);
uint8_t *b1 = pcb.bytes;
uint8_t *b2 = pcb.bytes + size;
/* If it's not multi-byte words, it doesn't need flipping */
if ( size < 2 )
return pcb;
/* We only need to flip the first two words, */
/* which are the common bit count and common bits word */
for ( n = 0; n < size / 2; n++ )
{
/* Flip bit count */
tmp1 = b1[n];
b1[n] = b1[size-n-1];
b1[size-n-1] = tmp1;
/* Flip common bits */
tmp2 = b2[n];
b2[n] = b2[size-n-1];
b2[size-n-1] = tmp2;
}
return pcb;
}
PCBYTES
pc_bytes_sigbits_decode_8(const PCBYTES pcb)
{
int i;
const uint8_t *bytes_ptr = (const uint8_t*)(pcb.bytes);
uint8_t nbits;
uint8_t commonvalue;
uint8_t mask;
int bit = 8;
size_t outbytes_size = sizeof(uint8_t) * pcb.npoints;
uint8_t *outbytes = pcalloc(outbytes_size);
uint8_t *obytes = (uint8_t*)outbytes;
PCBYTES pcbout = pcb;
/* How many unique bits? */
nbits = *bytes_ptr;
bytes_ptr++;
/* What is the shared bit value? */
commonvalue = *bytes_ptr;
bytes_ptr++;
/* Mask for just the unique parts */
mask = (0xFF >> (bit-nbits));
for ( i = 0; i < pcb.npoints; i++ )
{
int shift = bit - nbits;
uint8_t val = *bytes_ptr;
/* The unique part is all in this word */
if ( shift >= 0 )
{
/* Push unique part to bottom of word */
val >>= shift;
/* Mask out any excess */
val &= mask;
/* Add in the common part */
val |= commonvalue;
/* Save */
obytes[i] = val;
/* Move read head */
bit -= nbits;
}
/* The unique part is split over this word and the next */
else
{
int s = abs(shift);
val <<= s;
val &= mask;
val |= commonvalue;
obytes[i] = val;
bytes_ptr++;
bit = 8;
val = *bytes_ptr;
shift = bit - s;
val >>= shift;
val &= mask;
obytes[i] |= val;
bit -= s;
}
}
pcbout.size = outbytes_size;
pcbout.compression = PC_DIM_SIGBITS;
pcbout.bytes = outbytes;
pcbout.readonly = PC_FALSE;
return pcbout;
}
PCBYTES
pc_bytes_sigbits_decode_16(const PCBYTES pcb)
{
int i;
const uint16_t *bytes_ptr = (const uint16_t *)(pcb.bytes);
uint16_t nbits;
uint16_t commonvalue;
uint16_t mask;
static const int bitwidth = 16;
int bit = bitwidth;
size_t outbytes_size = sizeof(uint16_t) * pcb.npoints;
uint8_t *outbytes = pcalloc(outbytes_size);
uint16_t *obytes = (uint16_t*)outbytes;
PCBYTES pcbout = pcb;
/* How many unique bits? */
nbits = *bytes_ptr;
bytes_ptr++;
/* What is the shared bit value? */
commonvalue = *bytes_ptr;
bytes_ptr++;
/* Calculate mask */
mask = (0xFFFF >> (bit-nbits));
for ( i = 0; i < pcb.npoints; i++ )
{
int shift = bit - nbits;
uint16_t val = *bytes_ptr;
if ( shift >= 0 )
{
val >>= shift;
val &= mask;
val |= commonvalue;
obytes[i] = val;
bit -= nbits;
if ( bit <= 0 )
{
bytes_ptr++;
bit = bitwidth;
}
}
else
{
int s = abs(shift);
val <<= s;
val &= mask;
val |= commonvalue;
obytes[i] = val;
bytes_ptr++;
bit = bitwidth;
val = *bytes_ptr;
shift = bit - s;
val >>= shift;
val &= mask;
obytes[i] |= val;
bit -= s;
}
}
pcbout.size = outbytes_size;
pcbout.compression = PC_DIM_SIGBITS;
pcbout.bytes = outbytes;
pcbout.readonly = PC_FALSE;
return pcbout;
}
PCBYTES
pc_bytes_sigbits_decode_32(const PCBYTES pcb)
{
int i;
const uint32_t *bytes_ptr = (const uint32_t *)(pcb.bytes);
uint32_t nbits;
uint32_t commonvalue;
uint32_t mask;
static const int bitwidth = 32;
int bit = bitwidth;
size_t outbytes_size = sizeof(uint32_t) * pcb.npoints;
uint8_t *outbytes = pcalloc(outbytes_size);
uint32_t *obytes = (uint32_t*)outbytes;
PCBYTES pcbout = pcb;
/* How many unique bits? */
nbits = *bytes_ptr;
bytes_ptr++;
/* What is the shared bit value? */
commonvalue = *bytes_ptr;
bytes_ptr++;
/* Calculate mask */
mask = (0xFFFFFFFF >> (bit-nbits));
for ( i = 0; i < pcb.npoints; i++ )
{
int shift = bit - nbits;
uint32_t val = *bytes_ptr;
if ( shift >= 0 )
{
val >>= shift;
val &= mask;
val |= commonvalue;
obytes[i] = val;
bit -= nbits;
if ( bit <= 0 )
{
bytes_ptr++;
bit = bitwidth;
}
}
else
{
int s = abs(shift);
val <<= s;
val &= mask;
val |= commonvalue;
obytes[i] = val;
bytes_ptr++;
bit = bitwidth;
val = *bytes_ptr;
shift = bit - s;
val >>= shift;
val &= mask;
bit -= s;
obytes[i] |= val;
}
}
pcbout.size = outbytes_size;
pcbout.compression = PC_DIM_SIGBITS;
pcbout.bytes = outbytes;
pcbout.readonly = PC_FALSE;
return pcbout;
}
PCBYTES
pc_bytes_sigbits_decode_64(const PCBYTES pcb)
{
int i;
const uint64_t *bytes_ptr = (const uint64_t *)(pcb.bytes);
uint64_t nbits;
uint64_t commonvalue;
uint64_t mask;
static const int bitwidth = 64;
int bit = bitwidth;
size_t outbytes_size = sizeof(uint64_t) * pcb.npoints;
uint8_t *outbytes = pcalloc(outbytes_size);
uint64_t *obytes = (uint64_t*)outbytes;
PCBYTES pcbout = pcb;
/* How many unique bits? */
nbits = *bytes_ptr;
bytes_ptr++;
/* What is the shared bit value? */
commonvalue = *bytes_ptr;
bytes_ptr++;
/* Calculate mask */
mask = (0xFFFFFFFFFFFFFFFF >> (bit-nbits));
for ( i = 0; i < pcb.npoints; i++ )
{
int shift = bit - nbits;
uint64_t val = *bytes_ptr;
if ( shift >= 0 )
{
val >>= shift;
val &= mask;
val |= commonvalue;
obytes[i] = val;
bit -= nbits;
if ( bit <= 0 )
{
bytes_ptr++;
bit = bitwidth;
}
}
else
{
int s = abs(shift);
val <<= s;
val &= mask;
val |= commonvalue;
obytes[i] = val;
bytes_ptr++;
bit = bitwidth;
val = *bytes_ptr;
shift = bit - s;
val >>= shift;
val &= mask;
bit -= s;
obytes[i] |= val;
}
}
pcbout.size = outbytes_size;
pcbout.compression = PC_DIM_SIGBITS;
pcbout.bytes = outbytes;
pcbout.readonly = PC_FALSE;
return pcbout;
}
PCBYTES
pc_bytes_sigbits_decode(const PCBYTES pcb)
{
size_t size = pc_interpretation_size(pcb.interpretation);
switch ( size )
{
case 1:
{
return pc_bytes_sigbits_decode_8(pcb);
}
case 2:
{
return pc_bytes_sigbits_decode_16(pcb);
}
case 4:
{
return pc_bytes_sigbits_decode_32(pcb);
}
case 8:
{
return pc_bytes_sigbits_decode_64(pcb);
}
default:
{
pcerror("%s: cannot handle interpretation %d", __func__, pcb.interpretation);
}
}
pcerror("%s: got an unhandled errror", __func__);
return pcb;
}
static voidpf
pc_zlib_alloc(voidpf opaque, uInt nitems, uInt sz)
{
return pcalloc(sz*nitems);
}
static void
pc_zlib_free(voidpf opaque, voidpf ptr)
{
pcfree(ptr);
}
/* TO DO look for Z_STREAM_END on the write */
/**
* Returns compressed byte array with
* <size_t> size of compressed portion
* <size_t> size of original data
* <.....> compresssed bytes
*/
PCBYTES
pc_bytes_zlib_encode(const PCBYTES pcb)
{
z_stream strm;
int ret;
size_t have;
size_t bufsize = 4*pcb.size;
uint8_t *buf = pcalloc(bufsize);
PCBYTES pcbout = pcb;
/* Use our own allocators */
strm.zalloc = pc_zlib_alloc;
strm.zfree = pc_zlib_free;
strm.opaque = Z_NULL;
ret = deflateInit(&strm, 9);
/* Set up input buffer */
strm.avail_in = pcb.size;
strm.next_in = pcb.bytes;
/* Set up output buffer */
strm.avail_out = bufsize;
strm.next_out = buf;
/* Compress */
ret = deflate(&strm, Z_FINISH);
assert(ret != Z_STREAM_ERROR);
have = strm.total_out;
pcbout.size = have;
pcbout.bytes = pcalloc(pcbout.size);
pcbout.compression = PC_DIM_ZLIB;
pcbout.readonly = PC_FALSE;
memcpy(pcbout.bytes, buf, have);
pcfree(buf);
deflateEnd(&strm);
return pcbout;
}
/**
* Returns uncompressed byte array from input with
* <size_t> size of compressed portion
* <size_t> size of original data
* <.....> compresssed bytes
*/
PCBYTES
pc_bytes_zlib_decode(const PCBYTES pcb)
{
z_stream strm;
int ret;
PCBYTES pcbout = pcb;
pcbout.size = pc_interpretation_size(pcb.interpretation) * pcb.npoints;
/* Set up output memory */
pcbout.bytes = pcalloc(pcbout.size);
pcbout.readonly = PC_FALSE;
/* Use our own allocators */
strm.zalloc = pc_zlib_alloc;
strm.zfree = pc_zlib_free;
strm.opaque = Z_NULL;
ret = inflateInit(&strm);
/* Set up input buffer */
strm.avail_in = pcb.size;
strm.next_in = pcb.bytes;
strm.avail_out = pcbout.size;
strm.next_out = pcbout.bytes;
ret = inflate(&strm, Z_FINISH);
assert(ret != Z_STREAM_ERROR);
inflateEnd(&strm);
pcbout.compression = PC_DIM_NONE;
return pcbout;
}
/**
* This flips bytes in-place, so won't work on readonly bytes
*/
PCBYTES
pc_bytes_flip_endian(PCBYTES pcb)
{
if ( pcb.readonly )
pcerror("pc_bytes_flip_endian: cannot flip readonly bytes");
switch(pcb.compression)
{
case PC_DIM_NONE:
return pcb;
case PC_DIM_SIGBITS:
return pc_bytes_sigbits_flip_endian(pcb);
case PC_DIM_ZLIB:
return pcb;
case PC_DIM_RLE:
return pc_bytes_run_length_flip_endian(pcb);
default:
pcerror("%s: unknown compression", __func__);
}
return pcb;
}
size_t
pc_bytes_serialized_size(const PCBYTES *pcb)
{
/* compression type (1) + size of data (4) + data */
return 1 + 4 + pcb->size;
}
int
pc_bytes_serialize(const PCBYTES *pcb, uint8_t *buf, size_t *size)
{
static int compression_num_size = 1;
static int size_num_size = 4;
int32_t pcbsize = pcb->size;
/* Compression type number */
*buf = pcb->compression;
buf += compression_num_size;
/* Buffer size */
memcpy(buf, &pcbsize, size_num_size);
buf += size_num_size;
/* Buffer contents */
memcpy(buf, pcb->bytes, pcb->size);
/* Return total size */
*size = compression_num_size + size_num_size + pcbsize;
return PC_SUCCESS;
}
int
pc_bytes_deserialize(const uint8_t *buf, const PCDIMENSION *dim, PCBYTES *pcb, int readonly, int flip_endian)
{
pcb->compression = buf[0];
pcb->size = wkb_get_int32(buf+1, flip_endian);
pcb->readonly = readonly;
if ( readonly && flip_endian )
pcerror("pc_bytes_deserialize: cannot create a read-only buffer on byteswapped input");
if ( readonly )
{
pcb->bytes = (uint8_t*)(buf+5);
}
else
{
pcb->bytes = pcalloc(pcb->size);
memcpy(pcb->bytes, buf+5, pcb->size);
if ( flip_endian )
{
*pcb = pc_bytes_flip_endian(*pcb);
}
}
pcb->interpretation = dim->interpretation;
/* WARNING, still need to set externally */
/* pcb.npoints */
return PC_SUCCESS;
}
static int
pc_bytes_uncompressed_minmax(const PCBYTES *pcb, double *min, double *max, double *avg)
{
int i;
int element_size = pc_interpretation_size(pcb->interpretation);
double d;
double mn = FLT_MAX;
double mx = -1*FLT_MAX;
double sm = 0.0;
for ( i = 0; i < pcb->npoints; i++ )
{
d = pc_double_from_ptr(pcb->bytes + i*element_size, pcb->interpretation);
if ( d < mn )
mn = d;
if ( d > mx )
mx = d;
sm += d;
}
*min = mn;
*max = mx;
*avg = sm / pcb->npoints;
return PC_SUCCESS;
}
static int
pc_bytes_run_length_minmax(const PCBYTES *pcb, double *min, double *max, double *avg)
{
int element_size = pc_interpretation_size(pcb->interpretation);
double mn = FLT_MAX;
double mx = -1*FLT_MAX;
double sm = 0.0;
double d;
uint8_t *ptr = pcb->bytes;
uint8_t *ptr_end = pcb->bytes + pcb->size;
uint8_t count;
while( ptr < ptr_end )
{
/* Read count and advance */
count = *ptr;
ptr += 1;
/* Read value and advance */
d = pc_double_from_ptr(ptr, pcb->interpretation);
ptr += element_size;
/* Calc min */
if ( d < mn )
mn = d;
/* Calc max */
if ( d > mx )
mx = d;
/* Calc sum */
sm += count * d;
}
*min = mn;
*max = mx;
*avg = sm / pcb->npoints;
return PC_SUCCESS;
}
static int
pc_bytes_zlib_minmax(const PCBYTES *pcb, double *min, double *max, double *avg)
{
PCBYTES zcb = pc_bytes_zlib_decode(*pcb);
int rv = pc_bytes_uncompressed_minmax(&zcb, min, max, avg);
pc_bytes_free(zcb);
return rv;
}
static int
pc_bytes_sigbits_minmax(const PCBYTES *pcb, double *min, double *max, double *avg)
{
PCBYTES zcb = pc_bytes_sigbits_decode(*pcb);
int rv = pc_bytes_uncompressed_minmax(&zcb, min, max, avg);
pc_bytes_free(zcb);
return rv;
}
int
pc_bytes_minmax(const PCBYTES *pcb, double *min, double *max, double *avg)
{
switch(pcb->compression)
{
case PC_DIM_NONE:
return pc_bytes_uncompressed_minmax(pcb, min, max, avg);
case PC_DIM_SIGBITS:
return pc_bytes_sigbits_minmax(pcb, min, max, avg);
case PC_DIM_ZLIB:
return pc_bytes_zlib_minmax(pcb, min, max, avg);
case PC_DIM_RLE:
return pc_bytes_run_length_minmax(pcb, min, max, avg);
default:
pcerror("%s: unknown compression", __func__);
}
return PC_FAILURE;
}
/* NOTE: stats are gathered without applying scale and offset */
static PCBYTES
pc_bytes_uncompressed_filter(const PCBYTES *pcb, const PCBITMAP *map, PCDOUBLESTAT *stats)
{
int i = 0, j = 0;
double d;
PCBYTES fpcb = pc_bytes_clone(*pcb);
int interp = pcb->interpretation;
int sz = pc_interpretation_size(interp);
uint8_t *buf = pcb->bytes;
uint8_t *fbuf = fpcb.bytes;
while ( i < pcb->npoints )
{
/* This entry is flagged to copy, so... */
if ( pc_bitmap_get(map, i) )
{
/* Update stats on filtered bytes */
if ( stats )
{
d = pc_double_from_ptr(buf, interp);
if ( d < stats->min ) stats->min = d;
if ( d > stats->max ) stats->max = d;
stats->sum += d;
}
/* Copy into filtered byte array */
memcpy(fbuf, buf, sz);
fbuf += sz;
j++;
}
buf += sz;
i++;
}
fpcb.size = fbuf - fpcb.bytes;
fpcb.npoints = j;
return fpcb;
}
/* NOTE: stats are gathered without applying scale and offset */
static PCBYTES
pc_bytes_run_length_filter(const PCBYTES *pcb, const PCBITMAP *map, PCDOUBLESTAT *stats)
{
int i = 0, j = 0, npoints = 0;
double d;
PCBYTES fpcb = pc_bytes_clone(*pcb);
int sz = pc_interpretation_size(pcb->interpretation);
uint8_t *fptr = fpcb.bytes;
uint8_t *ptr = pcb->bytes;
uint8_t *ptr_end = pcb->bytes + pcb->size;
uint8_t count;
uint8_t fcount;
while( ptr < ptr_end )
{
/* Read unfiltered count */
count = *ptr;
/* Initialize filtered count */
fcount = 0;
/* How many filtered points are in this value entry? */
for ( j = i; j < i+count; j++ )
{
if ( pc_bitmap_get(map, j) )
{
fcount++;
}
}
/* If there are some, we need to copy */
if ( fcount )
{
/* Copy in the filtered count */
memcpy(fptr, &fcount, 1);
/* Advance to the value */
fptr++;
/* Copy in the value */
memcpy(fptr, ptr+1, sz);
/* Advance to next entry */
fptr += sz;
/* Increment point counter */
npoints += fcount;
/* Update the stats */
if ( stats )
{
d = pc_double_from_ptr(ptr+1, pcb->interpretation);
if ( d < stats->min ) stats->min = d;
if ( d > stats->max ) stats->max = d;
stats->sum += d;
}
}
/* Move to next value in unfiltered bytes */
ptr += sz+1;
i += count;
}
fpcb.size = fptr - fpcb.bytes;
fpcb.npoints = npoints;
return fpcb;
}
/* NOTE: stats are gathered without applying scale and offset */
PCBYTES
pc_bytes_filter(const PCBYTES *pcb, const PCBITMAP *map, PCDOUBLESTAT *stats)
{
switch(pcb->compression)
{
case PC_DIM_NONE:
return pc_bytes_uncompressed_filter(pcb, map, stats);
case PC_DIM_RLE:
return pc_bytes_run_length_filter(pcb, map, stats);
case PC_DIM_SIGBITS:
case PC_DIM_ZLIB:
{
PCBYTES dpcb = pc_bytes_decode(*pcb);
PCBYTES fpcb = pc_bytes_uncompressed_filter(&dpcb, map, stats);
PCBYTES efpcb = pc_bytes_encode(fpcb, pcb->compression);
pc_bytes_free(fpcb);
pc_bytes_free(dpcb);
return efpcb;
}
default:
pcerror("%s: unknown compression", __func__);
}
return *pcb;
}
static PCBITMAP *
pc_bytes_run_length_bitmap(const PCBYTES *pcb, PC_FILTERTYPE filter, double val1, double val2)
{
int i = 0, run = 0;
double d;
PCBITMAP *map = pc_bitmap_new(pcb->npoints);
int element_size = pc_interpretation_size(pcb->interpretation);
uint8_t *ptr = pcb->bytes;
uint8_t *ptr_end = pcb->bytes + pcb->size;
uint8_t count;
while( ptr < ptr_end )
{
/* Read count */
count = *ptr;
ptr++;
run = i + count;
/* Read value */
d = pc_double_from_ptr(ptr, pcb->interpretation);
ptr += element_size;
/* Apply run to bitmap */
while ( i < run )
{
pc_bitmap_filter(map, filter, i, d, val1, val2);
i++;
}
}
return map;
}
static PCBITMAP *
pc_bytes_uncompressed_bitmap(const PCBYTES *pcb, PC_FILTERTYPE filter, double val1, double val2)
{
int i = 0;
double d;
PCBITMAP *map = pc_bitmap_new(pcb->npoints);
int element_size = pc_interpretation_size(pcb->interpretation);
uint8_t *buf = pcb->bytes;
while ( i < pcb->npoints )
{
d = pc_double_from_ptr(buf, pcb->interpretation);
pc_bitmap_filter(map, filter, i, d, val1, val2);
/* Advance the pointer */
buf += element_size;
i++;
}
return map;
}
PCBITMAP *
pc_bytes_bitmap(const PCBYTES *pcb, PC_FILTERTYPE filter, double val1, double val2)
{
switch(pcb->compression)
{
case PC_DIM_NONE:
return pc_bytes_uncompressed_bitmap(pcb, filter, val1, val2);
case PC_DIM_SIGBITS:
case PC_DIM_ZLIB:
{
PCBYTES dpcb = pc_bytes_decode(*pcb);
PCBITMAP *map = pc_bytes_uncompressed_bitmap(&dpcb, filter, val1, val2);
pc_bytes_free(dpcb);
return map;
}
case PC_DIM_RLE:
return pc_bytes_run_length_bitmap(pcb, filter, val1, val2);
default:
pcerror("%s: unknown compression", __func__);
}
return NULL;
}