pointcloud/lib/pc_dimensional.c
2013-02-26 10:31:36 -08:00

1092 lines
27 KiB
C

/***********************************************************************
* pc_dimensional.c
*
* Support for "dimensional compression", which is a catch-all
* term for applying compression separately on each dimension
* of a PCPATCH collection of PCPOINTS.
*
* Depending on the character of the data, one of these schemes
* will be used:
*
* - run-length encoding
* - significant-bit removal
* - deflate
*
* Portions Copyright (c) 2012, OpenGeo
*
***********************************************************************/
#include <stdarg.h>
#include <assert.h>
#include "pc_api_internal.h"
#include "zlib.h"
PCDIMSTATS *
pc_dimstats_make(const PCSCHEMA *schema)
{
PCDIMSTATS *pds;
pds = pcalloc(sizeof(PCDIMSTATS));
pds->ndims = schema->ndims;
pds->stats = pcalloc(pds->ndims * sizeof(PCDIMSTAT));
return pds;
}
void
pc_dimstats_free(PCDIMSTATS *pds)
{
if ( pds->stats )
pcfree(pds->stats);
pcfree(pds);
}
int
pc_dimstats_update(PCDIMSTATS *pds, const PCDIMLIST *pdl)
{
int i, j;
uint32_t nelems = pdl->npoints;
const PCSCHEMA *schema = pdl->schema;
/* Update global stats */
pds->total_points += pdl->npoints;
pds->total_patches += 1;
/* Update dimensional stats */
for ( i = 0; i < pds->ndims; i++ )
{
PCBYTES pcb = pdl->bytes[i];
pds->stats[i].total_runs += pc_bytes_run_count(&pcb);
pds->stats[i].total_commonbits += pc_sigbits_count(&pcb);
}
/* Update recommended compression schema */
for ( i = 0; i < pds->ndims; i++ )
{
PCDIMENSION *dim = pc_schema_get_dimension(schema, i);
/* Uncompressed size, foreach point, one value entry */
double raw_size = pds->total_points * dim->size;
/* RLE size, for each run, one count byte and one value entry */
double rle_size = pds->stats[i].total_runs * (dim->size + 1);
/* Sigbits size, for each patch, one header and n bits for each entry */
double avg_commonbits_per_patch = pds->stats[i].total_commonbits / pds->total_patches;
double avg_uniquebits_per_patch = 8*dim->size - avg_commonbits_per_patch;
double sigbits_size = pds->total_patches * 2 * dim->size + pds->total_points * avg_uniquebits_per_patch / 8;
/* Default to ZLib */
pds->stats[i].recommended_compression = PC_DIM_ZLIB;
/* Only use rle and sigbits compression on integer values */
/* If we can do better than 4:1 we might beat zlib */
if ( dim->interpretation != PC_DOUBLE )
{
/* If sigbits is better than 4:1, use that */
if ( raw_size/sigbits_size > 4.0 )
{
pds->stats[i].recommended_compression = PC_DIM_SIGBITS;
}
/* If RLE size is even better, use that. */
else if ( raw_size/rle_size > 4.0 )
{
pds->stats[i].recommended_compression = PC_DIM_RLE;
}
}
}
return PC_SUCCESS;
}
/**
* Converts a list of I N-dimensional points into a
* list of N I-valued dimensions. Precursor to running
* compression on each dimension separately.
*/
PCDIMLIST *
pc_dimlist_from_pointlist(const PCPOINTLIST *pl)
{
PCDIMLIST *pdl;
int i, j, ndims, npoints;
assert(pl);
if ( pl->npoints == 0 ) return NULL;
pdl = pcalloc(sizeof(PCDIMLIST));
pdl->schema = pl->points[0]->schema;
ndims = pdl->schema->ndims;
npoints = pl->npoints;
pdl->npoints = npoints;
pdl->bytes = pcalloc(ndims * sizeof(PCBYTES));
for ( i = 0; i < ndims; i++ )
{
PCDIMENSION *dim = pc_schema_get_dimension(pdl->schema, i);
pdl->bytes[i] = pc_bytes_make(dim, npoints);
for ( j = 0; j < npoints; j++ )
{
uint8_t *to = pdl->bytes[i].bytes + dim->size * j;
uint8_t *from = pl->points[j]->data + dim->byteoffset;
memcpy(to, from, dim->size);
}
}
return pdl;
}
void
pc_dimlist_free(PCDIMLIST *pdl)
{
int i;
assert(pdl);
assert(pdl->schema);
if ( pdl->bytes )
{
for ( i = 0; i < pdl->schema->ndims; i++ )
pc_bytes_free(pdl->bytes[i]);
pcfree(pdl->bytes);
}
pcfree(pdl);
}
#if 0
int
pc_dimlist_encode(PCDIMLIST *pdl, PCDIMSTATS **pdsptr)
{
int i;
PCDIMSTATS *pds;
assert(pdl);
assert(pdl->schema);
assert(pdsptr);
/* Maybe we have stats passed in */
pds = *pdsptr;
/* No stats at all, make a new one */
if ( ! pds )
pds = pc_dimstats_make(pdl->schema);
/* Still sampling, update stats */
if ( pds->total_points < PCDIMSTATS_MIN_SAMPLE )
pc_dimstats_update(pds, pdl);
/* Compress each dimension as dictated by stats */
for ( i = 0; i < pdl->ndims; i++ )
{
uint8_t *bytes = pdl->data[i];
uint8_t *ebytes;
size_t ebytes_size;
PCDIMENSION *dim = pc_schema_get_dimension(pdl->schema, i);
/* PC_DIM_NONE, PC_DIM_RLE, PC_DIM_SIGBITS, PC_DIM_ZLIB */
switch ( pds->stats[i].recommended_compression )
{
}
}
return PC_SUCCESS;
}
#endif
int
pc_dimlist_decode(PCDIMLIST *pdl)
{
int i;
int ndims;
assert(pdl);
assert(pdl->schema);
return PC_SUCCESS;
}
/**
* How many distinct runs of values are there in this array?
* One? Two? Five? Great news for run-length encoding!
* N? Not so great news.
*/
uint32_t
pc_bytes_run_count(const PCBYTES *pcb)
{
int i;
const uint8_t *ptr0;
const uint8_t *ptr1;
size_t size = INTERPRETATION_SIZES[pcb->interpretation];
uint32_t runcount = 1;
for ( i = 1; i < pcb->npoints; i++ )
{
ptr0 = pcb->bytes + (i-1)*size;
ptr1 = pcb->bytes + i*size;
if ( memcmp(ptr0, ptr1, size) != 0 )
{
runcount++;
}
}
return runcount;
}
/**
* Take the uncompressed bytes and run-length encode (RLE) them.
* Structure of RLE array as:
* <uint8> number of elements
* <val> value
* ...
*/
PCBYTES
pc_bytes_run_length_encode(const PCBYTES pcb)
{
int i;
uint8_t *buf, *bufptr;
const uint8_t *bytesptr;
const uint8_t *runstart;
uint8_t *bytes_rle;
size_t size = INTERPRETATION_SIZES[pcb.interpretation];
uint8_t runlength = 1;
PCBYTES pcbout = pcb;
/* Allocate more size than we need (worst case: n elements, n runs) */
buf = pcalloc(pcb.npoints*size + sizeof(uint8_t)*pcb.npoints);
bufptr = buf;
/* First run starts at the start! */
runstart = pcb.bytes;
for ( i = 1; i <= pcb.npoints; i++ )
{
bytesptr = pcb.bytes + i*size;
/* Run continues... */
if ( i < pcb.npoints && runlength < 255 && memcmp(runstart, bytesptr, size) == 0 )
{
runlength++;
}
else
{
/* Write # elements in the run */
*bufptr = runlength;
bufptr += 1;
/* Write element value */
memcpy(bufptr, runstart, size);
bufptr += size;
/* Advance read head */
runstart = bytesptr;
runlength = 1;
}
}
/* Length of buffer */
pcbout.size = (bufptr - buf);
/* Write out shortest buffer possible */
bytes_rle = pcalloc(pcbout.size);
memcpy(bytes_rle, buf, pcbout.size);
pcfree(buf);
/* We're going to replace the current buffer */
pcbout.bytes = bytes_rle;
pcbout.compression = PC_DIM_RLE;
return pcbout;
}
/**
* Take the compressed bytes and run-length dencode (RLE) them.
* Structure of RLE array is:
* <uint8> number of elements
* <val> value
* ...
*/
PCBYTES
pc_bytes_run_length_decode(const PCBYTES pcb)
{
int i, n;
uint8_t *bytes;
uint8_t *bytes_ptr;
const uint8_t *bytes_rle_ptr = pcb.bytes;
const uint8_t *bytes_rle_end = pcb.bytes + pcb.size;
size_t size = INTERPRETATION_SIZES[pcb.interpretation];
size_t size_out;
uint8_t runlength;
uint32_t npoints = 0;
PCBYTES pcbout = pcb;
assert(pcb.compression == PC_DIM_RLE);
/* Count up how big our output is. */
while( bytes_rle_ptr < bytes_rle_end )
{
npoints += *bytes_rle_ptr;
bytes_rle_ptr += 1 + size;
}
assert(npoints == pcb.npoints);
/* Alocate output and fill it up */
size_out = size * npoints;
bytes = pcalloc(size_out);
bytes_ptr = bytes;
bytes_rle_ptr = pcb.bytes;
while ( bytes_rle_ptr < bytes_rle_end )
{
n = *bytes_rle_ptr;
bytes_rle_ptr += 1;
for ( i = 0; i < n; i++ )
{
memcpy(bytes_ptr, bytes_rle_ptr, size);
bytes_ptr += size;
}
bytes_rle_ptr += size;
}
pcbout.compression = PC_DIM_NONE;
pcbout.size = size_out;
pcbout.bytes = bytes;
return pcbout;
}
uint8_t
pc_sigbits_count_8(const PCBYTES *pcb, uint32_t *nsigbits)
{
static uint8_t nbits = 8;
uint8_t *bytes = (uint8_t*)(pcb->bytes);
uint8_t elem_and = bytes[0];
uint8_t elem_or = bytes[0];
uint32_t commonbits = nbits;
int i;
for ( i = 0; i < pcb->npoints; i++ )
{
elem_and &= bytes[i];
elem_or |= bytes[i];
}
while ( elem_and != elem_or )
{
elem_and >>= 1;
elem_or >>= 1;
commonbits -= 1;
}
elem_and <<= nbits - commonbits;
if ( nsigbits ) *nsigbits = commonbits;
return elem_and;
}
uint16_t
pc_sigbits_count_16(const PCBYTES *pcb, uint32_t *nsigbits)
{
static int nbits = 16;
uint16_t *bytes = (uint16_t*)(pcb->bytes);
uint16_t elem_and = bytes[0];
uint16_t elem_or = bytes[0];
uint32_t commonbits = nbits;
int i;
for ( i = 0; i < pcb->npoints; i++ )
{
elem_and &= bytes[i];
elem_or |= bytes[i];
}
while ( elem_and != elem_or )
{
elem_and >>= 1;
elem_or >>= 1;
commonbits -= 1;
}
elem_and <<= nbits - commonbits;
if ( nsigbits ) *nsigbits = commonbits;
return elem_and;
}
uint32_t
pc_sigbits_count_32(const PCBYTES *pcb, uint32_t *nsigbits)
{
static int nbits = 32;
uint32_t *bytes = (uint32_t*)(pcb->bytes);
uint32_t elem_and = bytes[0];
uint32_t elem_or = bytes[0];
uint32_t commonbits = nbits;
int i;
for ( i = 0; i < pcb->npoints; i++ )
{
elem_and &= bytes[i];
elem_or |= bytes[i];
}
while ( elem_and != elem_or )
{
elem_and >>= 1;
elem_or >>= 1;
commonbits -= 1;
}
elem_and <<= nbits - commonbits;
if ( nsigbits ) *nsigbits = commonbits;
return elem_and;
}
uint64_t
pc_sigbits_count_64(const PCBYTES *pcb, uint32_t *nsigbits)
{
static int nbits = 64;
uint64_t *bytes = (uint64_t*)(pcb->bytes);
uint64_t elem_and = bytes[0];
uint64_t elem_or = bytes[0];
uint32_t commonbits = nbits;
int i;
for ( i = 0; i < pcb->npoints; i++ )
{
elem_and &= bytes[i];
elem_or |= bytes[i];
}
while ( elem_and != elem_or )
{
elem_and >>= 1;
elem_or >>= 1;
commonbits -= 1;
}
elem_and <<= nbits - commonbits;
if ( nsigbits ) *nsigbits = commonbits;
return elem_and;
}
/**
* How many bits are shared by all elements of this array?
*/
uint32_t
pc_sigbits_count(const PCBYTES *pcb)
{
size_t size = INTERPRETATION_SIZES[pcb->interpretation];
uint32_t nbits = -1;
switch ( size )
{
case 1: /* INT8, UINT8 */
{
uint8_t commonvalue = pc_sigbits_count_8(pcb, &nbits);
break;
}
case 2: /* INT16, UINT16 */
{
uint16_t commonvalue = pc_sigbits_count_16(pcb, &nbits);
break;
}
case 4: /* INT32, UINT32 */
{
uint32_t commonvalue = pc_sigbits_count_32(pcb, &nbits);
break;
}
case 8: /* DOUBLE, INT64, UINT64 */
{
uint64_t commonvalue = pc_sigbits_count_64(pcb, &nbits);
break;
}
default:
{
pcerror("pc_sigbits_count cannot handle interpretation %d", pcb->interpretation);
return -1;
}
}
return nbits;
}
/**
* Encoded array:
* <uint8> number of bits per unique section
* <uint8> common bits for the array
* [n_bits]... unique bits packed in
* Size of encoded array comes out in ebytes_size.
*/
PCBYTES
pc_bytes_sigbits_encode_8(const PCBYTES pcb, uint8_t commonvalue, uint8_t commonbits)
{
int i;
int shift;
uint8_t *bytes = (uint8_t*)(pcb.bytes);
/* How wide are our words? */
static int bitwidth = 8;
/* How wide are our unique values? */
int nbits = bitwidth - commonbits;
/* Size of output buffer (#bits/8+1remainder+2metadata) */
size_t size_out = (nbits * pcb.npoints / 8) + 3;
uint8_t *bytes_out = pcalloc(size_out);
/* Use this to zero out the parts that are common */
uint8_t mask = (0xFF >> commonbits);
/* Write head */
uint8_t *byte_ptr = bytes_out;
/* What bit are we writing to now? */
int bit = bitwidth;
/* Write to... */
PCBYTES pcbout = pcb;
/* Number of unique bits goes up front */
*byte_ptr = nbits; byte_ptr++;
/* The common value we'll add the unique values to */
*byte_ptr = commonvalue; byte_ptr++;
/* All the values are the same... */
if ( bitwidth == commonbits )
{
pcbout.size = size_out;
pcbout.bytes = bytes_out;
pcbout.compression = PC_DIM_SIGBITS;
return pcbout;
}
for ( i = 0; i < pcb.npoints; i++ )
{
uint8_t val = bytes[i];
/* Clear off common parts */
val &= mask;
/* How far to move unique parts to get to write head? */
shift = bit - nbits;
/* If positive, we can fit this part into the current word */
if ( shift >= 0 )
{
val <<= shift;
*byte_ptr |= val;
bit -= nbits;
if ( bit <= 0 )
{
bit = bitwidth;
byte_ptr++;
}
}
/* If negative, then we need to split this part across words */
else
{
/* First the bit into the current word */
uint8_t v = val;
int s = abs(shift);
v >>= s;
*byte_ptr |= v;
/* The reset to write the next word */
bit = bitwidth;
byte_ptr++;
v = val;
shift = bit - s;
/* But only those parts we didn't already write */
v <<= shift;
*byte_ptr |= v;
bit -= s;
}
}
pcbout.size = size_out;
pcbout.bytes = bytes_out;
pcbout.compression = PC_DIM_SIGBITS;
return pcbout;
}
/**
* Encoded array:
* <uint16> number of bits per unique section
* <uint16> common bits for the array
* [n_bits]... unique bits packed in
* Size of encoded array comes out in ebytes_size.
*/
PCBYTES
pc_bytes_sigbits_encode_16(const PCBYTES pcb, uint16_t commonvalue, uint8_t commonbits)
{
int i;
int shift;
uint16_t *bytes = (uint16_t*)(pcb.bytes);
/* How wide are our words? */
static int bitwidth = 16;
/* How wide are our unique values? */
int nbits = bitwidth - commonbits;
/* Size of output buffer (#bits/8+1remainder+4metadata) */
size_t size_out = (nbits * pcb.npoints / 8) + 5;
uint8_t *bytes_out = pcalloc(size_out);
/* Use this to zero out the parts that are common */
uint16_t mask = (0xFFFF >> commonbits);
/* Write head */
uint16_t *byte_ptr = (uint16_t*)(bytes_out);
/* What bit are we writing to now? */
int bit = bitwidth;
/* Write to... */
PCBYTES pcbout = pcb;
/* Number of unique bits goes up front */
*byte_ptr = nbits; byte_ptr++;
/* The common value we'll add the unique values to */
*byte_ptr = commonvalue; byte_ptr++;
/* All the values are the same... */
if ( bitwidth == commonbits )
{
pcbout.size = size_out;
pcbout.bytes = bytes_out;
pcbout.compression = PC_DIM_SIGBITS;
return pcbout;
}
for ( i = 0; i < pcb.npoints; i++ )
{
uint16_t val = bytes[i];
/* Clear off common parts */
val &= mask;
/* How far to move unique parts to get to write head? */
shift = bit - nbits;
/* If positive, we can fit this part into the current word */
if ( shift >= 0 )
{
val <<= shift;
*byte_ptr |= val;
bit -= nbits;
if ( bit <= 0 )
{
bit = bitwidth;
byte_ptr++;
}
}
/* If negative, then we need to split this part across words */
else
{
/* First the bit into the current word */
uint16_t v = val;
int s = abs(shift);
v >>= s;
*byte_ptr |= v;
/* The reset to write the next word */
bit = bitwidth;
byte_ptr++;
v = val;
shift = bit - s;
/* But only those parts we didn't already write */
v <<= shift;
*byte_ptr |= v;
bit -= s;
}
}
pcbout.size = size_out;
pcbout.bytes = bytes_out;
pcbout.compression = PC_DIM_SIGBITS;
return pcbout;
}
/**
* Encoded array:
* <uint32> number of bits per unique section
* <uint32> common bits for the array
* [n_bits]... unique bits packed in
* Size of encoded array comes out in ebytes_size.
*/
PCBYTES
pc_bytes_sigbits_encode_32(const PCBYTES pcb, uint32_t commonvalue, uint8_t commonbits)
{
int i;
int shift;
uint32_t *bytes = (uint32_t*)(pcb.bytes);
/* How wide are our words? */
static int bitwidth = 32;
/* How wide are our unique values? */
int nbits = bitwidth - commonbits;
/* Size of output buffer (#bits/8+1remainder+8metadata) */
size_t size_out = (nbits * pcb.npoints / 8) + 9;
uint8_t *bytes_out = pcalloc(size_out);
/* Use this to zero out the parts that are common */
uint32_t mask = (0xFFFFFFFF >> commonbits);
/* Write head */
uint32_t *byte_ptr = (uint32_t*)bytes_out;
/* What bit are we writing to now? */
int bit = bitwidth;
/* Write to... */
PCBYTES pcbout = pcb;
/* Number of unique bits goes up front */
*byte_ptr = nbits; byte_ptr++;
/* The common value we'll add the unique values to */
*byte_ptr = commonvalue; byte_ptr++;
/* All the values are the same... */
if ( bitwidth == commonbits )
{
pcbout.size = size_out;
pcbout.bytes = bytes_out;
pcbout.compression = PC_DIM_SIGBITS;
return pcbout;
}
for ( i = 0; i < pcb.npoints; i++ )
{
uint32_t val = bytes[i];
/* Clear off common parts */
val &= mask;
/* How far to move unique parts to get to write head? */
shift = bit - nbits;
/* If positive, we can fit this part into the current word */
if ( shift >= 0 )
{
val <<= shift;
*byte_ptr |= val;
bit -= nbits;
if ( bit <= 0 )
{
bit = bitwidth;
byte_ptr++;
}
}
/* If negative, then we need to split this part across words */
else
{
/* First the bit into the current word */
uint32_t v = val;
int s = abs(shift);
v >>= s;
*byte_ptr |= v;
/* The reset to write the next word */
bit = bitwidth;
byte_ptr++;
v = val;
shift = bit - s;
/* But only those parts we didn't already write */
v <<= shift;
*byte_ptr |= v;
bit -= s;
}
}
pcbout.size = size_out;
pcbout.bytes = bytes_out;
pcbout.compression = PC_DIM_SIGBITS;
return pcbout;
}
/**
* Convert a raw byte array into with common bits stripped and the
* remaining bits packed in.
* <uint8|uint16|uint32> number of bits per unique section
* <uint8|uint16|uint32> common bits for the array
* [n_bits]... unique bits packed in
* Size of encoded array comes out in ebytes_size.
*/
PCBYTES
pc_bytes_sigbits_encode(const PCBYTES pcb)
{
size_t size = INTERPRETATION_SIZES[pcb.interpretation];
uint32_t nbits;
switch ( size )
{
case 1:
{
uint8_t commonvalue = pc_sigbits_count_8(&pcb, &nbits);
return pc_bytes_sigbits_encode_8(pcb, commonvalue, nbits);
}
case 2:
{
uint16_t commonvalue = pc_sigbits_count_16(&pcb, &nbits);
return pc_bytes_sigbits_encode_16(pcb, commonvalue, nbits);
}
case 4:
{
uint32_t commonvalue = pc_sigbits_count_32(&pcb, &nbits);
return pc_bytes_sigbits_encode_32(pcb, commonvalue, nbits);
}
default:
{
pcerror("pc_bytes_sigbits_encode cannot handle interpretation %d", pcb.interpretation);
}
}
pcerror("Uh Oh");
return pcb;
}
PCBYTES
pc_bytes_sigbits_decode_8(const PCBYTES pcb)
{
int i;
const uint8_t *bytes_ptr = (const uint8_t*)(pcb.bytes);
uint8_t nbits;
uint8_t commonvalue;
uint8_t mask;
int bit = 8;
size_t outbytes_size = sizeof(uint8_t) * pcb.npoints;
uint8_t *outbytes = pcalloc(outbytes_size);
uint8_t *obytes = (uint8_t*)outbytes;
PCBYTES pcbout = pcb;
/* How many unique bits? */
nbits = *bytes_ptr; bytes_ptr++;
/* What is the shared bit value? */
commonvalue = *bytes_ptr; bytes_ptr++;
/* Mask for just the unique parts */
mask = (0xFF >> (bit-nbits));
for ( i = 0; i < pcb.npoints; i++ )
{
int shift = bit - nbits;
uint8_t val = *bytes_ptr;
/* The unique part is all in this word */
if ( shift >= 0 )
{
/* Push unique part to bottom of word */
val >>= shift;
/* Mask out any excess */
val &= mask;
/* Add in the common part */
val |= commonvalue;
/* Save */
obytes[i] = val;
/* Move read head */
bit -= nbits;
}
/* The unique part is split over this word and the next */
else
{
int s = abs(shift);
val <<= s;
val &= mask;
val |= commonvalue;
obytes[i] = val;
bytes_ptr++;
bit = 8;
val = *bytes_ptr;
shift = bit - s;
val >>= shift;
val &= mask;
obytes[i] |= val;
bit -= s;
}
}
pcbout.size = outbytes_size;
pcbout.compression = PC_DIM_SIGBITS;
pcbout.bytes = outbytes;
return pcbout;
}
PCBYTES
pc_bytes_sigbits_decode_16(const PCBYTES pcb)
{
int i;
const uint16_t *bytes_ptr = (const uint16_t *)(pcb.bytes);
uint16_t nbits;
uint16_t commonvalue;
uint16_t mask;
int bit = 16;
size_t outbytes_size = sizeof(uint8_t) * pcb.npoints;
uint8_t *outbytes = pcalloc(outbytes_size);
uint16_t *obytes = (uint16_t*)outbytes;
PCBYTES pcbout = pcb;
/* How many unique bits? */
nbits = *bytes_ptr; bytes_ptr++;
/* What is the shared bit value? */
commonvalue = *bytes_ptr; bytes_ptr++;
/* Calculate mask */
mask = (0xFFFF >> (bit-nbits));
for ( i = 0; i < pcb.npoints; i++ )
{
int shift = bit - nbits;
uint16_t val = *bytes_ptr;
if ( shift >= 0 )
{
val >>= shift;
val &= mask;
val |= commonvalue;
obytes[i] = val;
bit -= nbits;
}
else
{
int s = abs(shift);
val <<= s;
val &= mask;
val |= commonvalue;
obytes[i] = val;
bytes_ptr++;
bit = 16;
val = *bytes_ptr;
shift = bit - s;
val >>= shift;
val &= mask;
obytes[i] |= val;
bit -= s;
}
}
pcbout.size = outbytes_size;
pcbout.compression = PC_DIM_SIGBITS;
pcbout.bytes = outbytes;
return pcbout;
}
PCBYTES
pc_bytes_sigbits_decode_32(const PCBYTES pcb)
{
int i;
const uint32_t *bytes_ptr = (const uint32_t *)(pcb.bytes);
uint32_t nbits;
uint32_t commonvalue;
uint32_t mask;
int bit = 32;
size_t outbytes_size = sizeof(uint8_t) * pcb.npoints;
uint8_t *outbytes = pcalloc(outbytes_size);
uint32_t *obytes = (uint32_t*)outbytes;
PCBYTES pcbout = pcb;
/* How many unique bits? */
nbits = *bytes_ptr; bytes_ptr++;
/* What is the shared bit value? */
commonvalue = *bytes_ptr; bytes_ptr++;
/* Calculate mask */
mask = (0xFFFFFFFF >> (bit-nbits));
for ( i = 0; i < pcb.npoints; i++ )
{
int shift = bit - nbits;
uint32_t val = *bytes_ptr;
if ( shift >= 0 )
{
val >>= shift;
val &= mask;
val |= commonvalue;
obytes[i] = val;
bit -= nbits;
}
else
{
int s = abs(shift);
val <<= s;
val &= mask;
val |= commonvalue;
obytes[i] = val;
bytes_ptr++;
bit = 32;
val = *bytes_ptr;
shift = bit - s;
val >>= shift;
val &= mask;
bit -= s;
obytes[i] |= val;
}
}
pcbout.size = outbytes_size;
pcbout.compression = PC_DIM_SIGBITS;
pcbout.bytes = outbytes;
return pcbout;
}
PCBYTES
pc_bytes_sigbits_decode(const PCBYTES pcb)
{
size_t size = INTERPRETATION_SIZES[pcb.interpretation];
switch ( size )
{
case 1:
{
return pc_bytes_sigbits_decode_8(pcb);
}
case 2:
{
return pc_bytes_sigbits_decode_16(pcb);
}
case 4:
{
return pc_bytes_sigbits_decode_32(pcb);
}
default:
{
pcerror("pc_bytes_sigbits_decode cannot handle interpretation %d", pcb.interpretation);
}
}
pcerror("pc_bytes_sigbits_decode got an unhandled errror");
return pcb;
}
static voidpf
pc_zlib_alloc(voidpf opaque, uInt nitems, uInt sz)
{
return pcalloc(sz*nitems);
}
static void
pc_zlib_free(voidpf opaque, voidpf ptr)
{
pcfree(ptr);
}
/* TO DO look for Z_STREAM_END on the write */
/**
* Returns compressed byte array with
* <size_t> size of compressed portion
* <size_t> size of original data
* <.....> compresssed bytes
*/
PCBYTES
pc_bytes_zlib_encode(const PCBYTES pcb)
{
z_stream strm;
int ret;
size_t have;
size_t bufsize = 4*pcb.size;
uint8_t *buf = pcalloc(bufsize);
PCBYTES pcbout = pcb;
/* Use our own allocators */
strm.zalloc = pc_zlib_alloc;
strm.zfree = pc_zlib_free;
strm.opaque = Z_NULL;
ret = deflateInit(&strm, 9);
/* Set up input buffer */
strm.avail_in = pcb.size;
strm.next_in = pcb.bytes;
/* Set up output buffer */
strm.avail_out = bufsize;
strm.next_out = buf;
/* Compress */
ret = deflate(&strm, Z_FINISH);
assert(ret != Z_STREAM_ERROR);
have = strm.total_out;
pcbout.size = have;
pcbout.bytes = pcalloc(pcbout.size);
pcbout.compression = PC_DIM_ZLIB;
memcpy(pcbout.bytes, buf, have);
pcfree(buf);
deflateEnd(&strm);
return pcbout;
}
/**
* Returns uncompressed byte array from input with
* <size_t> size of compressed portion
* <size_t> size of original data
* <.....> compresssed bytes
*/
PCBYTES
pc_bytes_zlib_decode(const PCBYTES pcb)
{
z_stream strm;
int ret;
PCBYTES pcbout = pcb;
pcbout.size = INTERPRETATION_SIZES[pcb.interpretation] * pcb.npoints;
/* Set up output memory */
pcbout.bytes = pcalloc(pcbout.size);
/* Use our own allocators */
strm.zalloc = pc_zlib_alloc;
strm.zfree = pc_zlib_free;
strm.opaque = Z_NULL;
ret = inflateInit(&strm);
/* Set up input buffer */
strm.avail_in = pcb.size;
strm.next_in = pcb.bytes;
strm.avail_out = pcbout.size;
strm.next_out = pcbout.bytes;
ret = inflate(&strm, Z_FINISH);
assert(ret != Z_STREAM_ERROR);
inflateEnd(&strm);
pcbout.compression = PC_DIM_NONE;
return pcbout;
}