PDFKit Guide

By Devon Govett
Version 0.11.0

Getting Started with PDFKit

Installation

Installation uses the npm package manager. Just type the following command after
installing npm.

npm install pdfkit

Creating a document

Creating a PDFKit document is quite simple. Just require the pdfkit module in your
JavaScript source file and create an instance of the PDFDocument class.

const PDFDocument = require('pdfkit');
const doc = new PDFDocument;

PDFDocument instances are readable Node streams. They don't get saved anywhere
automatically, but you can call the pipe method to send the output of the PDF document to
another writable Node stream as it is being written. When you're done with your document,
call the end method to finalize it. Here is an example showing how to pipe to a file or an
HTTP response.

doc.pipe(fs.createWriteStream('/path/to/file.pdf'));
doc.pipe(res);

doc.end();

The write and output methods found in PDFKit before version 0.5 are now deprecated.

http://npmjs.org/

Using PDFKit in the browser

PDFKit can be used in the browser as well as in Node! There are two ways to use PDFKit in the
browser. The first is to create an app using an module bundler like Browserify or Webpack.
The second is to create a standalone pdfkit script as explained here.

Using PDFKit in the browser is exactly the same as using it in Node, except you'll want to
pipe the output to a destination supported in the browser, such as a Blob. Blobs can be used
to generate a URL to allow display of generated PDFs directly in the browser via an 1 frame, or
they can be used to upload the PDF to a server, or trigger a download in the user's browser.

To get a Blob from a PDFDocument, you should pipe it to a blob-stream, which is a module
that generates a Blob from any Node-style stream. The following example uses Browserify to
load PDFKit and blob-stream, but if you're not using Browserify, you can load them in
whatever way you'd like (e.g. script tags).

const PDFDocument = require('pdfkit');
const blobStream = require('blob-stream');

const doc = new PDFDocument;

const stream = doc.pipe(blobStream());

doc.end();
stream.on('finish', function() {

const blob = stream.toBlob('application/pdf');

const url = stream.toBlobURL('application/pdf');
iframe.src = url;

B
You can see an interactive in-browser demo of PDFKit here.

Note that in order to Browserify a project using PDFKit, you need to install the brfs module
with npm, which is used to load built-in font data into the package. It is listed as a
devDependencies in PDFKit's package.json, so it isn't installed by default for Node users. If
you forget to install it, Browserify will print an error message.

http://browserify.org/
https://webpack.js.org/
https://github.com/foliojs/pdfkit/wiki/How-to-compile-standalone-PDFKit-for-use-in-the-browser
https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://github.com/devongovett/blob-stream
http://pdfkit.org/demo/browser.html

Adding pages

The first page of a PDFKit document is added for you automatically when you create the
document unless you provide autoFirstPage: false. Subsequent pages must be added by
you. Luckily, it is quite simple!

doc.addPage()

To add some content every time a page is created, either by calling addPage () or
automatically, you can use the pageAdded event.

doc.on('pageAdded', () => doc.text("Page Title"));
You can also set some options for the page, such as its size and orientation.

The layout property can be either portrait (the default) or landscape. The size property
can be either an array specifying [width, height] in PDF points (72 per inch), or a string
specifying a predefined size. A list of the predefined paper sizes can be seen here. The default
is letter.

Passing a page options object to the PDFDocument constructor will set the default paper size
and layout for every page in the document, which is then overridden by individual options
passed to the addPage method.

You can set the page margins in two ways. The first is by setting the margin property
(singular) to a number, which applies that margin to all edges. The other way is to set the
margins property (plural) to an object with top, bottom, left, and right values. The default
isa1inch (72 point) margin on all sides.

For example:

doc.addPage({
margin: 50});

doc.addPage ({
margins: {
top: 50,
bottom: 50,
left: 72,
right: 72
}
1)

http://pdfkit.org/docs/paper_sizes.html

Switching to previous pages

PDFKit normally flushes pages to the output file immediately when a new page is created,
making it impossible to jump back and add content to previous pages. This is normally not
an issue, but in some circumstances it can be useful to add content to pages after the whole
document, or a part of the document, has been created already. Examples include adding
page numbers, or filling in other parts of information you don't have until the rest of the
document has been created.

PDFKit has a bufferPages option in versions v0.7.0 and later that allows you to control when
pages are flushed to the output file yourself rather than letting PDFKit handle that for you.
To use it, just pass bufferPages: true as an option to the PDFDocument constructor. Then,
you can call doc.switchToPage (pageNumber) to switch to a previous page (page numbers
start at 0).

When you're ready to flush the buffered pages to the output file, call flushPages. This
method is automatically called by doc.end (), so if you just want to buffer all pages in the
document, you never need to call it. Finally, there is a bufferedPageRange method, which
returns the range of pages that are currently buffered. Here is a small example that shows
how you might add page numbers to a document.

let 1;

let end;

const doc = new PDFDocument ({
bufferPages: true}l);

doc.addPage();

doc.addPage();

const range = doc.bufferedPageRange();

for (i = range.start, end = range.start + range.count, range.start <= end; i < end; i+
50 1

doc.switchToPage(i);

doc.text(Page ${i + 1} of ${range.count}’);
}

doc.flushPages();

doc.end();

Setting default font

The default font is 'Helvetica'. It can be configured by passing font option

const doc = new PDFDocument({font: 'Courier'});

Setting document metadata

PDF documents can have various metadata associated with them, such as the title, or author
of the document. You can add that information by adding it to the doc.info object, or by
passing an info object into the document at creation time.

Here is a list of all of the properties you can add to the document metadata. According to the
PDF spec, each property must have its first letter capitalized.

Title - the title of the document

Author - the name of the author

Subject - the subject of the document

Keywords - keywords associated with the document

CreationDate - the date the document was created (added automatically by PDFKit)

ModDate - the date the document was last modified

Encryption and Access Privileges

PDF specification allow you to encrypt the PDF file and require a password when opening the
file, and/or set permissions of what users can do with the PDF file. PDFKit implements
standard security handler in PDF version 1.3 (40-bit RC4), version 1.4 (128-bit RC4), PDF
version 1.7 (128-bit AES), and PDF version 1.7 ExtensionLevel 3 (256-bit AES).

To enable encryption, provide a user password when creating the PDFDocument in options
object. The PDF file will be encrypted when a user password is provided, and users will be
prompted to enter the password to decrypt the file when opening it.

userPassword - the user password (string value)

To set access privileges for the PDF file, you need to provide an owner password and
permission settings in the option object when creating PDFDocument. By default, all
operations are disallowed. You need to explicitly allow certain operations.

ownerPassword - the owner password (string value)

permissions - the object specifying PDF file permissions

Following settings are allowed in permissions object:

printing - whether printing is allowed. Specify "lowResolution" to allow degraded
printing, or "highResolution" to allow printing with high resolution

mod1ifying - whether modifying the file is allowed. Specify true to allow modifying
document content

copying - whether copying text or graphics is allowed. Specify true to allow copying

annotating - whether annotating, form filling is allowed. Specify true to allow annotating
and form filling

fillingForms - whether form filling and signing is allowed. Specify true to allow filling in
form fields and signing

contentAccessibility - whether copying text for accessibility is allowed. Specify true to
allow copying for accessibility

documentAssembly - whether assembling document is allowed. Specify true to allow
document assembly

You can specify either user password, owner password or both passwords. Behavior differs
according to passwords you provides:

When only user password is provided, users with user password are able to decrypt the file
and have full access to the document.

When only owner password is provided, users are able to decrypt and open the document
without providing any password, but the access is limited to those operations explicitly
permitted. Users with owner password have full access to the document.

When both passwords are provided, users with user password are able to decrypt the file but
only have limited access to the file according to permission settings. Users with owner

password have full access to the document.

Note that PDF file itself cannot enforce access privileges. When file is decrypted, PDF viewer
applications have full access to the file content, and it is up to viewer applications to respect
permission settings.

To choose encryption method, you need to specify PDF version. PDFKit will choose best
encryption method available in the PDF version you specified.

pdfVersion - a string value specifying PDF file version

Available options includes:

1.3 - PDF version 1.3 (default), 40-bit RC4 is used

1.4 - PDF version 1.4, 128-bit RC4 is used

1.5 - PDF version 1.5, 128-bit RC4 is used

1.6 - PDF version 1.6, 128-bit AES is used

1.7 - PDF version 1.7, 128-bit AES is used

1.7ext3 - PDF version 1.7 ExtensionLevel 3, 256-bit AES is used

When using PDF version 1.7 ExtensionLevel 3, password is truncated to 127 bytes of its UTF-8
representation. In older versions, password is truncated to 32 bytes, and only Latin-1
characters are allowed.

Adding content

Once you've created a PDFDocument instance, you can add content to the document. Check
out the other sections described in this document to learn about each type of content you can
add.

That's the basics! Now let's move on to PDFKit's powerful vector graphics abilities.

Paper Sizes

When creating a new document or adding a new page to your current document, PDFKit
allows you to set the page dimensions. To improve convenience, PDFKit has a number of
predefined page sizes. These sizes are based on the most commonly used stndard page sizes.

Predefined Page Sizes

The following predefined sizes are based on the ISO (International) standards. All the
dimensions in brackets are in PostScript points.

A-series

A0 (2383.94 x3370.39)
A1(1683.78 x2383.94)
A2 (1190.55 X 1683.78)
A3 (841.89 X 1190.55)
A4 (595.28 X 841.89)
A5 (419.53 X 595.28)
A6 (297.64 X 419.53)
A7(209.76X297.64)
A8 (147.40 % 209.76)
A9 (104.88 X 147.40)
A10 (73.70 X 104.88)

B-series

B0 (2834.65 X 4008.19)
B1(2004.09 X 2834.65)
B2 (1417.32 X 2004.09)
B3 (1000.63 X 1417.32)
B4 (708.66 x1000.63)
B5 (498.90 x 708.66)
B6 (354.33 X 498.90)
B7(249.45X354.33)
B8 (175.75 X 249.45)
B9 (124.72x175.75)
B10 (87.87 x124.72)

C-series

C0(2599.37 X 3676.54)
C1(1836.85x 2599.37)
C2(1298.27 x1836.85)
C3(918.43x1298.27)
C4 (649.13x 918.43)
C5 (459.21 X 649.13)
C6 (323.15 X 459.21)
C7(229.61x323.15)
C8(161.57 X 229.61)
C9 (113.39 X 161.57)
C10(79.37 X 113.39)

RA-series

RAO (2437.80 x3458.27)
RA1(1729.13 X 2437.80)
RA2 (1218.90X1729.13)
RA3 (864.57 X 1218.90)
RA4 (609.45 X 864.57)

SRA-series

SRAO (2551.18 X 3628.35)
SRA1 (1814.17 X 2551.18)
SRA2 (1275.59 X 1814.17)
SRA3(907.09 X 1275.59)
SRA4 (637.80x 907.09)

The following predefined sizes are based on the common paper sizes used mainly in the
United States of America and Canada. The dimensions in brackets are in PostScript points.

EXECUTIVE (521.86 X 756.00)
LEGAL (612.00 X 1008.00)
LETTER (612.00 X 792.00)
TABLOID (792.00 X 1224.00)

PDFKit supports also the following paper sizes. The dimensions in brackets are in PostScript
points.

4A0 (4767.89 X 6740.79)
2A0 (3370.39x 4767.87)
FOLIO (612.00 X 936.00)

Setting the page size

In order to use the predefined sizes, the name of the size (as named in the lists above) should
be passed to either the PDFDocument constructor or the addPage () function in the size
property of the options object, as shown in the example below, using A7 as the preferred
size.

const doc = new PDFDocument({size: 'A7'});

doc.addPage({size: 'A7'});

Vector Graphics in PDFKit

An introduction to vector graphics

Unlike images which are defined by pixels, vector graphics are defined through a series of
drawing commands. This makes vector graphics scalable to any size without a reduction in
quality (pixelization). The PDF format was designed with vector graphics in mind, so creating
vector drawings is very easy. The PDFKit vector graphics APIs are very similar to that of the
HTML5 canvas element, so if you are familiar at all with that API, you will find PDFKit easy to
pick up.

Creating basic shapes

Shapes are defined by a series of lines and curves. lineTo, bezierCurveTo and
quadraticCurveTo all draw from the current point (which you can set with moveTo) to the
specified point (always the last two arguments). Bezier curves use two control points and
quadratic curves use just one. Here is an example that illustrates defining a path.

doc.moveTo (0, 20)
.lineTo (160, 160)
.quadraticCurveTo(130, 200, 150, 120)
.bezierCurveTo(190, -40, 200, 200, 300, 150)
.lineTo (400, 90)
.stroke();

The output of this example looks like this:

One thing to notice about this example is the use of method chaining. All methods in PDFKit
are chainable, meaning that you can call one method right after the other without
referencing the doc variable again. Of course, this is an option, so if you don't like how the
code looks when chained, you don't have to write it that way.

SVG paths

PDFKit includes an SVG path parser, so you can include paths written in the SVG path syntax
in your PDF documents. This makes it simple to include vector graphics elements produced
in many popular editors such as Inkscape or Adobe Illustrator. The previous example could
also be written using the SVG path syntax like this.

doc.path('M 0,20 L 100,160 Q 130,200 150,120 C 190,-40 200,200 300,150 L 400,90'")
.stroke()

The PDFKit SVG parser supports all of the command types supported by SVG, so any valid
SVG path you throw at it should work as expected.

Shape helpers

PDEFKit also includes some helpers that make defining common shapes much easier. Here is
a list of the helpers.

rect(x, y, width, height)

roundedRect(x, y, width, height, cornerRadius)
ellipse(centerX, centerY, radiusX, radiusY = radiusX)
circle(centerX, centerY, radius)

polygon(points...)

The last one, polygon, allows you to pass in a list of points (arrays of x,y pairs), and it will
create the shape by moving to the first point, and then drawing lines to each consecutive
point. Here is how you'd draw a triangle with the polygon helper.

doc.polygon([160, 0], [50, 100], [150, 100]);
doc.stroke();

The output of this example looks like this:

Fill and stroke styles

So far we have only been stroking our paths, but you can also fill them with the fil1l method,
and both fill and stroke the same path with the fil1l1AndStroke method. Note that calling
fill and then stroke consecutively will not work because of a limitation in the PDF spec.
Use the fillAndStroke method if you want to accomplish both operations on the same path.

In order to make our drawings interesting, we really need to give them some style. PDFKit
has many methods designed to do just that.

lineWidth
lineCap
lineJoin
miterLimit
dash
fillColor
strokeColor
opacity
fillOpacity
strokeOpacity

Some of these are pretty self explanatory, but let's go through a few of them.

Line cap and line join

The 1ineCap and lineJoin properties accept constants describing what they should do. This
is best illustrated by an example.

doc.linewWidth(25);

doc.lineCap('butt')
.moveTo (50, 20)
.lineTo (100, 20)
.stroke();

doc.lineCap('round")
.moveTo (150, 20)
.lineTo (200, 20)
.stroke();

doc.lineCap('square')
.moveTo (250, 20)
.circle(275, 30, 15)
.stroke();

doc.lineJoin('miter')
.rect(50, 100, 50, 50)
.stroke();

doc.lineJoin('round')
.rect(150, 100, 50, 50)
.stroke();

doc.lineJoin('bevel')
.rect(250, 100, 50, 50)
.stroke();

The output of this example looks like this.

Dashed lines

The dash method allows you to create non-continuous dashed lines. It takes a length
specifying how long each dash should be, as well as an optional hash describing the
additional properties space and phase. Lengths must be positive numbers; dash will throw if
passed invalid lengths.

The space option defines the length of the space between each dash, and the phase option
defines the starting point of the sequence of dashes. By default the space attribute is equal
to the length and the phase attribute is set to . You can use the undash method to make the
line solid again.

The following example draws a circle with a dashed line where the space between the dashes
is double the length of each dash.

doc.circle(100, 50, 50)
.dash(5, {space: 10})
.stroke();

The output of this example looks like this:

Color

What is a drawing without color? PDFKit makes it simple to set the fill and stroke color and
opacity. You can pass an array specifying an RGB or CMYK color, a hex color string, or use any
of the named CSS colors.

The fillColor and strokeColor methods accept an optional second argument as a shortcut
for setting the fill0Opacity and strokeOpacity. Finally, the opacity method is a
convenience method that sets both the fill and stroke opacity to the same value.

The fi1l and stroke methods also accept a color as an argument so that you don't have to
call fillColor or strokeColor beforehand. The fil1lAndStroke method accepts both fill
and stroke colors as arguments.

doc.circle(100, 50, 50)
.LinewWidth(3)
.fillOpacity(0.8)
.fillAndStroke("red", "#900")

This example produces the following output:

Gradients

PDEFKit also supports gradient fills. Gradients can be used just like color fills, and are applied
with the same methods (e.g. fillColor, or just fi1l). Before you can apply a gradient with
these methods, however, you must create a gradient object.

There are two types of gradients: linear and radial. They are created by the l1inearGradient
and radialGradient methods. Their function signatures are listed below:

linearGradient(x1, y1, x2, y2) - x1,ylis the start point, x2,y2 is the end point

radialGradient(x1, y1, rl1, x2, y2, r2) - ri1istheinnerradius, r2 is the outer radius

Once you have a gradient object, you need to create color stops at points along that gradient.
Stops are defined at percentage values (0 to 1), and take a color value (any usable by the
fillColor method), and an optional opacity.

You can see both linear and radial gradients in the following example:

// Create a linear gradient
let grad = doc.linearGradient(50, 0, 150, 100);
grad.stop(0, 'green')

.stop(1, 'red');

doc.rect(50, 0, 100, 100);
doc.fill(grad);

// Create a radial gradient
grad = doc.radialGradient(300, 50, 0, 300, 50, 50);
grad.stop(0, 'orange', 0)

.stop(1l, 'orange', 1);

doc.circle(300, 50, 50);
doc.fill(grad);

Here is the output from the this example:

Winding rules

Winding rules define how a path is filled and are best illustrated by an example. The winding
rule is an optional attribute to the fi11l and fi11AndStroke methods, and there are two
values to choose from: non-zero and even-odd.

// Initial setup

doc.fillColor('red'")
.translate(-100, -50)
.scale(0.8);

// Draw the path with the non-zero winding rule
doc.path('M 250,75 L 323,301 131,161 369,161 177,301 z')
.fill('non-zero');

// Draw the path with the even-odd winding rule
doc.translate (280, 0)
.path('M 250,75 L 323,301 131,161 369,161 177,301 z')
.fill('even-odd');

You'll notice that I used the scale and translate transformations in this example. We'll
cover those in a minute. The output of this example, with some added labels, is below.

Saving and restoring the graphics stack

Once you start producing more complex vector drawings, you will want to be able to save and
restore the state of the graphics context. The graphics state is basically a snapshot of all the
styles and transformations (see below) that have been applied, and many states can be
created and stored on a stack. Every time the save method is called, the current graphics
state is pushed onto the stack, and when you call restore, the last state on the stack is
applied to the context again. This way, you can save the state, change some styles, and then
restore it to how it was before you made those changes.

Transformations

Transformations allow you to modify the look of a drawing without modifying the drawing
itself. There are three types of transformations available, as well as a method for setting the
transformation matrix yourself. They are translate, rotate and scale.

The translate transformation takes two arguments, x and y, and effectively moves the
origin of the page which is (0, 0) by default, to the left and right x and y units.

The rotate transformation takes an angle and optionally, an object with an origin property.
It rotates the document angle degrees around the passed origin or by default, around the
origin (top left corner) of the page.

The scale transformation takes a scale factor and an optional ordigin passed in an options
hash as with the rotate transformation. It is used to increase or decrease the size of the
units in the drawing, or change its size. For example, applying a scale of 8.5 would make the
drawing appear at half size, and a scale of 2 would make it appear twice as large.

If you are feeling particularly smart, you can modify the transformation matrix yourself
using the transform method.

We used the scale and translate transformations above, so here is an example of using the
rotate transformation. We'll set the origin of the rotation to the center of the rectangle.

doc.rotate(20, {origin: [150, 70]})
.rect(100, 20, 100, 100)
LFill('gray');

This example produces the following effect.

Clipping

A clipping path is a path defined using the normal path creation methods, but instead of
being filled or stroked, it becomes a mask that hides unwanted parts of the drawing.
Everything falling inside the clipping path after it is created is visible, and everything outside
the path is invisible. Here is an example that clips a checkerboard pattern to the shape of a
circle.

// Create a clipping path
doc.circle(100, 100, 100)
.clip();

// Draw a checkerboard pattern
for (let row = 0; row < 10; row++) {
for (let col = 0; col < 10; col++) {
const color = (col % 2) - (row % 2) ? '#eee' : '#4183C4';
doc.rect(row * 20, col x 20, 20, 20)
.fill(color);
3
3

The result of this example is the following:

If you want to "unclip", you can use the save method before the clipping, and then use
restore to retrieve access to the whole page.

That's it for vector graphics in PDFKit. Now let's move on to learning about PDFKit's text
support!

Text in PDFKit

The basics

PDFKit makes adding text to documents quite simple, and includes many options to
customize the display of the output. Adding text to a document is as simple as calling the
text method.

doc.text('Hello world!")

Internally, PDFKit keeps track of the current X and Y position of text as it is added to the
document. This way, subsequent calls to the text method will automatically appear as new
lines below the previous line. However, you can modify the position of text by passing X and
Y coordinates to the text method after the text itself.

doc.text('Hello world!', 100, 100)

If you want to move down or up by lines, just call the moveDown or moveUp method with the
number of lines you'd like to move (1 by default).

Line wrapping and justification

PDFKit includes support for line wrapping out of the box! If no options are given, text is
automatically wrapped within the page margins and placed in the document flow below any
previous text, or at the top of the page. PDFKit automatically inserts new pages as necessary
so you don't have to worry about doing that for long pieces of text. PDFKit can also
automatically wrap text into multiple columns.

The text will automatically wrap unless you set the lineBreak option to false. By default it
will wrap to the page margin, but the width option allows you to set a different width the
text should be wrapped to. If you set the height option, the text will be clipped to the
number of lines that can fit in that height.

When line wrapping is enabled, you can choose a text justification. There are four options:
left (the default), center, right, and justify. They work just as they do in your favorite
word processor, but here is an example showing their use in a text box.

const lorem = 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam in
suscipit purus. Vestibulum ante dipsum primis in faucibus orci luctus et ultrices
posuere cubilia Curae; Vivamus nec hendrerit felis. Morbi aliquam facilisis risus eu
lacinia. Sed eu leo in turpis fringilla hendrerit. Ut nec accumsan nisl.';

doc.fontSize(8);

doc.text(This text is left aligned. ${lorem} , {
width: 410,
align: 'left'

}

)3

doc.moveDown () ;

doc.text(This text is centered. ${lorem} , {
width: 410,
align: 'center'

}

)3

doc.moveDown () ;

doc.text(This text is right aligned. ${lorem}", {
width: 410,
align: 'right'

3

)3

doc.moveDown () ;

doc.text(This text is justified. ${lorem} , {
width: 410,
align: 'justify'

3

)3

doc.rect(doc.x, 0, 410, doc.y).stroke();

The output of this example, looks like this:

his text is Teft aligned. Corem ipsum dolor sit amet, consectefur adipiscing elit. Efiam In suscipit purus. vestibulum
nte ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Vivamus nec hendrerit felis. Morbi
liguam facilisis risus eu lacinia. Sed eu leo in turpis fringilla hendrerit. Ut nec accumsan nisl.

This text is centered. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam in suscipit purus. Vestibulum
ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Vivamus nec hendrerit felis. Morbi
aliquam facilisis risus eu lacinia. Sed eu leo in turpis fringilla hendrerit. Ut nec accumsan nisl.

Text styling

PDFKit has many options for controlling the look of text added to PDF documents, which can
be passed to the text method. They are enumerated below.

lineBreak - set to false to disable line wrapping all together

width - the width that text should be wrapped to (by default, the page width minus the left
and right margin)

height - the maximum height that text should be clipped to

ellipsis - the character to display at the end of the text when it is too long. Set to true to
use the default character.

columns - the number of columns to flow the text into

columnGap - the amount of space between each column (1/4 inch by default)
indent - the amount in PDF points (72 per inch) to indent each paragraph of text
paragraphGap - the amount of space between each paragraph of text
lineGap - the amount of space between each line of text

wordSpacing - the amount of space between each word in the text
characterSpacing - the amount of space between each character in the text
fi1l - whether to fill the text (true by default)

stroke - whether to stroke the text

1ink - a URL to link this text to (shortcut to create an annotation)

goTo - go to anchor (shortcut to create an annotation)

destination - create anchor to this text

underline - whether to underline the text

strike - whether to strike out the text

oblique - whether to slant the text (angle in degrees or true)

baseline - the vertical alignment of the text with respect to its insertion point (values as
canvas textBaseline)

continued - whether the text segment will be followed immediately by another segment.
Useful for changing styling in the middle of a paragraph.

features - an array of OpenType feature tags to apply. If not provided, a set of defaults is
used.

Additionally, the fill and stroke color and opacity methods described in the vector graphics
section are applied to text content as well.

https://www.w3schools.com/tags/canvas_textbaseline.asp
https://www.microsoft.com/typography/otspec/featuretags.htm
vector.html
vector.html

Here is an example combining some of the options above, wrapping a piece of text into three
columns, in a specified width and height.

const lorem = 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam 1in
suscipit purus. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices
posuere cubilia Curae; Vivamus nec hendrerit felis. Morbi aliquam facilisis risus eu
lacinia. Sed eu leo in turpis fringilla hendrerit. Ut nec accumsan nisl. Suspendisse
rhoncus nisl posuere tortor tempus et dapibus elit porta. Cras leo neque, elementum a
rhoncus ut, vestibulum non nibh. Phasellus pretium justo turpis. Etiam vulputate,
odio vitae tincidunt ultricies, eros odio dapibus nisi, ut tincidunt lacus arcu eu
elit. Aenean velit erat, vehicula eget lacinia ut, dignissim non tellus. Aliquam nec
lacus mi, sed vestibulum nunc. Suspendisse potenti. Curabitur vitae sem turpis.
Vestibulum sed neque eget dolor dapibus porttitor at sit amet sem. Fusce a turpis
lorem. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere
cubilia Curae;';

doc.text(lorem, {
columns: 3,
columnGap: 15,
height: 100,

width: 465,
align: 'justify'
1)

The output looks like this:

Lorem ipsum dolor sit amet, Suspendisse rhoncus nisl posuere dignissim non tellus. Aliguam nec
consectetur adipiscing elit. Etiam in tortor tempus et dapibus elit porta. lacus mi, sed vestibulum nunc.
suscipit purus. Vestibulum ante Cras leo neque, elementum a Suspendisse potenti. Curabitur
ipsum primis in faucibus orci luctus rhoncus ut, vestibulum non nibh. vitae sem turpis. Vestibulum sed
et ultrices posuere cubilia Curae; Phasellus pretium justo turpis. neque eget dolor dapibus porttitor
Vivamus nec hendrerit felis. Morbi Etiam vulputate, odio vitae tincidunt at sit amet sem. Fusce a turpis
aliquam facilisis risus eu lacinia. ultricies, eros odio dapibus nisi, ut lorem. Vestibulum ante ipsum
Sed eu leo in turpis fringilla tincidunt lacus arcu eu elit. Aenean primis in faucibus orci luctus et
hendrerit. Ut nec accumsan nisl. velit erat, vehicula eget lacinia ut, ultrices posuere cubilia Curae;

Text measurements

If you're working with documents that require precise layout, you may need to know the size
of a piece of text. PDFKit has two methods to achieve this: widthofString(text, options)
and heightofString(text, options). Both methods use the same options described in the
Text styling section, and take into account the eventual line wrapping.

Lists

The 1ist method creates a bulleted list. It accepts as arguments an array of strings, and the
optional x, y position. You can create complex multilevel lists by using nested arrays. Lists
use the following additional options:

bulletRadius
textIndent
bulletIndent

Rich Text

As mentioned above, PDFKit supports a simple form of rich text via the continued option.
When set to true, PDFKit will retain the text wrapping state between text calls. This way,
when you call text again after changing the text styles, the wrapping will continue right
where it left off.

The options given to the first text call are also retained for subsequent calls after a
continued one, but of course you can override them. In the following example, the width
option from the first text call is retained by the second call.

doc.fillColor('green')
.text(lorem.slice(0, 500), {
width: 465,
continued: true
}).fillColor('red'")
.text(lorem.slice(500));

Here is the output:

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam in suscipit purus. Vestibulum ante ipsum primis in
faucibus orci luctus et ultrices posuere cubilia Curae; Vivamus nec hendrerit felis. Morbi aliquam facilisis risus eu
lacinia. Sed eu leo in turpis fringilla hendrerit. Ut nec accumsan nisl. Suspendisse rhoncus nisl posuere tortor
tempus et dapibus elit porta. Cras leo neque, elementum a rhoncus ut, vestibulum non nibh. Phasellus pretium justo
turpis. Etiam vulputate, odio vitae tincidunt ultricies, eros odio dapibus nisi, ut tincidunt lacus arcu eu elit. Aenean
velit erat, vehicula eget lacinia ut, dignissim non tellus. Aliquam nec lacus mi, sed vestibulum nunc. Suspendisse
potenti. Curabitur vitae sem turpis. Vestibulum sed neque eget dolor dapibus porttitor at sit amet sem. Fusce a turpis
lorem. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae;

To cancel a link in rich text set the link option to null.

doc.fillColor('red')

.text(lorem.slice(0, 199), {
width: 465,
continued: true

b

.fillColor('blue')

.text(lorem.slice(199, 282), {
link: 'http://www.example.com',
continued: true

b

.fillColor('green')

.text(lorem.slice(182, 400), {
link: null

1)

Here is the output:

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam in suscipit purus. Vestibulum ante ipsum primis in
faucibus orci luctus et ultrices posuere cubilia Curae; Vivamus nec hendrerit felis. Morbi aliquam facilisis risus eu
lacinia. Sed eu leo in turpis fringilla hendrerit.nendrerit felis. Morbi aliquam facilisis risus eu lacinia. Sed eu leo in
turpis fringilla hendrerit. Ut nec accumsan nisl. Suspendisse rhoncus nisl posuere tortor tempus et dapibus elit porta.
Cras leo neque, elementum

http://www.example.com
http://www.example.com

Fonts

The PDF format defines 14 standard fonts that can be used in PDF documents. PDFKit
supports each of them out of the box. Besides Symbol and Zapf Dingbats this includes 4
styles (regular, bold, italic/oblique, bold+italic) of Helvetica, Courier, and Times. To switch
between standard fonts, call the font method with the corresponding Label:

'Courier’
'Courier-Bold'
"Courier-0Oblique'
"Courier-BoldOblique'
'Helvetica'
'"Helvetica-Bold'
'"Helvetica-Oblique'
'"Helvetica-BoldOblique'
'Symbol!’
'Times-Roman'
'"Times-Bold'
'"Times-Italic'
'Times-BoldItalic'

'ZapfDingbats'

The PDF format also allows fonts to be embedded right in the document. PDFKit supports
embedding TrueType (. ttf), OpenType (.otf), WOFF, WOFF2, TrueType Collection (. ttc),
and Datafork TrueType (.dfont) fonts.

To change the font used to render text, just call the font method. If you are using a standard
PDF font, just pass the name to the font method. Otherwise, pass the path to the font file, or
a Buffer containing the font data. If the font is a collection font (. ttc and .dfont files),
meaning that it contains multiple styles in the same file, you should pass the name of the
style to be extracted from the collection.

Here is an example showing how to set the font in each case.
doc.fontSize(18);

doc.font('Times-Roman')
.text('Hello from Times Roman!')
.moveDown (0.5) ;

doc.font('fonts/GoodDog.ttf'")
.text('This is Good Dog!'")
.moveDown (0.5);

doc. font('fonts/Chalkboard.ttc', 'Chalkboard-Bold')
.text('This is Chalkboard, not Comic Sans.');

The output of this example looks like this:

Hello from Times Roman!
This is Good Dog/

This is Chalkboard, not Comic Sans.

Another nice feature of the PDFKit font support, is the ability to register a font file under a
name for use later rather than entering the path to the font every time you want to use it.

doc.registerFont('Heading Font', 'fonts/Chalkboard.ttc', 'Chalkboard-Bold');
doc.font('Heading Font')

.text('This is a heading.');

That's about all there is too it for text in PDFKit. Let's move on now to images.

Images in PDFKit

Adding images to PDFKit documents is an easy task. Just pass an image path, buffer, or data
uri with base64 encoded data to the image method along with some optional arguments.
PDFKit supports the JPEG and PNG formats. If an X and Y position are not provided, the
image is rendered at the current point in the text flow (below the last line of text). Otherwise,
it is positioned absolutely at the specified point. The image will be scaled according to the
following options.

Neither width or height provided - image is rendered at full size

width provided but not height - image is scaled proportionally to fit in the provided width
height provided but not width - image is scaled proportionally to fit in the provided height
Both width and height provided - image is stretched to the dimensions provided

scale factor provided - image is scaled proportionally by the provided scale factor

fit array provided - image is scaled proportionally to fit within the passed width and height

cover array provided - image is scaled proportionally to completely cover the rectangle
defined by the passed width and height

link - a URL to link this image to (shortcut to create an annotation)
goTo - go to anchor (shortcut to create an annotation)

destination - create anchor to this image

When a fit or cover array is provided, PDFKit accepts these additional options:

align - horizontally align the image, the possible values are 'left', 'center' and 'right'

valign - vertically align the image, the possible values are 'top', 'center' and 'bottom'

Here is an example showing some of these options.

doc.image('images/test.jpeg', 0, 15, {width: 300})
.text('Proportional to width', 0, 0);

doc.image('images/test.jpeg', 320, 15, {fit: [100, 100]})
.rect(320, 15, 100, 100)
.stroke()
.text('Fit', 320, 0);

doc.image('images/test.jpeg', 320, 145, {width: 200, height: 100})
.text('Stretch', 320, 130);

doc.image('images/test.jpeg', 320, 280, {scale: 0.253})
.text('Scale', 320, 265);

// Fit the image 1in the dimensions, and center it both horizontally and vertically
doc.image('images/test.jpeg', 430, 15, {fit: [100, 100], align: 'center', valign:
'center'})

.rect(430, 15, 100, 100).stroke()

.text('Centered', 430, 0);

This example produces the following output:

Proportional to width Fit Centered

That is all there is to adding images to your PDF documents with PDFKit. Now let's look at
adding outlines.

Outlines in PDFKit

Outlines are the heirachical bookmarks that display in some PDF readers. Currently only
page bookmarks are supported, but more may be added in the future. They are simple to add
and only require a single method:

addItem(title, options)

Here is an example of adding a bookmark with a single child bookmark.
const { outline } = doc;
const top = outline.addItem('Top Level');

top.addItem('Sub-section');

Options

The options parameter currently only has one property: expanded. If this value is set to true
then all of that section's children will be visible by default. This value defaults to false.

In this example the 'Top Level' section will be expanded to show 'Sub-section'.

const top = outline.addItem('Top Level', { expanded: true });

top.addItem('Sub-section');

Annotations in PDFKit

Annotations are interactive features of the PDF format, and they make it possible to include
things like links and attached notes, or to highlight, underline or strikeout portions of text.
Annotations are added using the various helper methods, and each type of annotation is
defined by a rectangle and some other properties. Here is a list of the available annotation
methods:

note(x, y, width, height, contents, options)
link(x, y, width, height, url, options)

goTo(x, y, w, h, name, options)

highlight(x, y, width, height, options)
underline(x, y, width, height, options)

strike(x, y, width, height, options)
lineAnnotation(x1, yl1, x2, y2, options)
rectAnnotation(x, y, width, height, options)
ellipseAnnotation(x, y, width, height, options)
textAnnotation(x, y, width, height, text, options)
fileAnnotation(x, y, width, height, file, options)

Many of the annotations have a color option that you can specify. You can use an array of
RGB values, a hex color, or a named CSS color value for that option.

If you are adding an annotation to a piece of text, such as a link or underline, you will need to
know the width and height of the text in order to create the required rectangle for the
annotation. There are two methods that you can use to do that. To get the width of any piece
of text in the current font, just call the widthofString method with the string you want to
measure. To get the line height in the current font, just call the currentLineHeight method.

You must remember that annotations have a stacking order. If you are putting more than one
annotation on a single area and one of those annotations is a link, make sure that the link is
the last one you add, otherwise it will be covered by another annotation and the user won't
be able to click it.

Here is an example that uses a few of the annotation types.

// Add the 1link text
doc.fontSize(25)

.fillColor('blue')

.text('This is a link!', 20, 0);

// Measure the text
const width = doc.widthOfString('This is a link!');
const height = doc.currentLineHeight();

// Add the underline and link annotations
doc.underline(20, 0, width, height, {color: 'blue'})
.link(20, 0, width, height, 'http://google.com/');

// Create the highlighted text

doc.moveDown ()
.fillColor('black")
.highlight(20, doc.y, doc.widthOfString('This text 1is highlighted!'), height)
.text('This text is highlighted!"');

// Create the crossed out text

doc.moveDown ()
.strike(20, doc.y, doc.widthOfString('STRIKE!'), height)
.text('STRIKE!');

// Adding go to as annotation
doc.goTo (20, doc.y, 10, 20, 'LINK', {});

The output of this example looks like this.

This is a link!

This text is highlighted!

STRIKE!

Annotations are currently not the easiest things to add to PDF documents, but that is the
fault of the PDF spec itself. Calculating a rectangle manually isn't fun, but PDFKit makes it
easier for a few common annotations applied to text, including links, underlines, and
strikes. Here's an example showing two of them:

doc.fontSize(20)
.fillColor('red'")
.text('Another 1link!', 20, 0, {
link: 'http://apple.com/',

http://google.com/

underline: true
}
)3

The output is as you'd expect:

Another link!

http://apple.com/

Destinations

Anchor may specify a destination by addNamedDestination(name, ...args), which
consists of a page, the location of the display window on that page, and the zoom factor to
use when displaying that page.

Examples of creating anchor:

// Insert anchor for current page
doc.addNamedDestination('LINK');

// Insert anchor for current page with only horizontal magnified to fit where
vertical top is 100
doc.addNamedDestination('LINK', 'FitH', 100);

// Insert anchor to display a portion of the current page, 1/2 inch in from the top
and left and zoomed 50%
doc.addNamedDestination('LINK', 'XYZ', 36, 36, 50);

// Insert anchor for this text
doc.text('End of paragraph', { destination: 'ENDP' });

Examples of go to link to anchor:

// Go to annotation
doc.goTo(10, 10, 100, 20, 'LINK')

// Go to annotation for this text
doc.text('Another goto', 20, 0, {
goTo: 'ENDP',
underline: true

s

Attachments in PDFKit

Embedded Files

Embedded files make it possible to embed any external file into a PDF. Adding an embedded
file is as simple as calling the file method and specifying a filepath.

doc.file(path.join(__dirname, 'example.txt'))

It is also possible to embed data directly as a Buffer, ArrayBuffer or base64 encoded string. If
you are embedding data, it is recommended you also specify a filename like this:

doc.file(Buffer.from('this will be a text file'), { name: 'example.txt' })

When embedding a data URL, the type option will be set to the data URL's MIME type
automatically:

doc.file('data:text/plain;base64,YmFzZTYOIHNOcmluZw==", { name: 'base64.txt' })
There are a few other options for doc. file:

name - specify the embedded file's name

type - specify the embedded file's subtype as a MIME-Type
description - add descriptive text for the embedded file
hidden - if true, do not show file in the list of embedded files
creationDate - override the date and time the file was created

modi fiedDate - override the date and time the file was last updated

If you are attaching a file from your file system, creationDate and modifiedDate will be set to
the source file's creationDate and modifiedDate.

Setting the hidden option prevents this file from showing up in the pdf viewer's attachment
panel. While this may not be very useful for embedded files, it is absolutely necessary for file
annotations, to prevent them from showing up twice in the attachment panel.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Common_types

File Annotations

A file annotation contains a reference to an embedded file that can be placed anywhere in the
document. File annotations show up in your reader's annotation panel as well as the
attachment panel.

In order to add a file annotation, you should first read the chapter on annotations. Like other
annotations, you specify position and size with x, y, width and height, unlike other
annotations you must also specify a file object. The file object may contain the same options
as doc.file in the previous section with the addition of the source file or buffered data in src

Here is an example of adding a file annotation:

const file = {
src: path.join(__dirname, 'example.txt'),
name: 'example.txt',
description: 'file annotation description'

}
const options = { Name: 'Paperclip' }

doc.fileAnnotation(100, 100, 100, 100, file, options)

The annotation's appearance may be changed by setting the Name option to one of the three
predefined icons GraphPush, Paperclip or Push (default value).

Accessibility

Accessible PDFs are usable by visually impaired users who rely on screen readers/text-to-
speech engines/vocalisation.

The two main tasks required to create accessible PDFs are marking content and defining the
document's logical structure. These are detailed in the following sections.

Some other simpler tasks are also required.

This checklist covers everything that is required to create a conformant PDF/UA (PDF for
Universal Accessibility) document (which is an extension of Tagged PDF):

Pass the option pdfVersion: '1.5' (or a higher version) when creating your PDFDocument
(depending on the features you use, you may only need 1.4; refer to the PDF reference for
details).

Pass the option tagged: true when creating your PDFDocument (technically, this sets the
Marked property in the Markings dictionary to true in the PDF).

Provide a Title in the info option, and pass displayTitle: true when creating your
PDFDocument.

Specify natural language in the document options and/or logical structure and/or non-
structure marked Span content.

Add logical structure with all significant content included.

Include accessibility information (such as alternative text, actual text, etc.) in the logical
structure and/or non-structure marked Span content.

Include all spaces which separate words/sentences/etc. in your marked structure content,
even at the ends of lines, paragraphs, etc.. I.e. don't do doc.text("Hello, world!") but
instead do doc.text("Hello, world! ").

Mark all non-structure content as artifacts.

As well as creating the logical structure, write objects to the PDF in the natural "reading
order".

Do not convey information solely using visuals (such as colour, contrast or position on the
page).
No flickering or flashing content.

Marked Content

Marked content sequences are foundational to creating accessible PDFs.
All marked content sequences are associated with a registered tag, such as 'Span'.

Example of marking content:

doc.markContent('Span');
doc.text('Hello, world! ');
doc.endMarkedContent();

Marked content is automatically ended when a page is ended, and if a new page is
automatically added by text wrapping, marking is automatically begun again on the new

page.

Tags to use are listed in a later section.

Marked Content Options

When marking content, you can provide options (take care to use correct capitalisation):

type - used for artifact content; may be Pagination (e.g. headers and footers), Layout (e.g.
rules and backgrounds) or Page (cut marks etc.)

bbox - bounding box for artifact content: [left, top, right, bottom] in default
coordinates

attached - used for Pagination artifact content, array of one or more strings: Top, Bottom,
Left, Right

lang - used for span content: human language code (e.g. en-AU) which overrides default
document language, and any enclosing structure element language

alt - used for Span content: alternative text for an image or other visual content
expanded - used for Span content: the expanded form of an abbreviation or acronym

actual - used for Span content: the actual text the content represents (e.g. if it is rendered
as vector graphics)

It is advisable not to use Span content for specifying alternative text, expanded form, or
actual text, especially if there is a possibility of the content automatically wrapping, which
would result in the text appearing twice. Set these options on an associated structure
element instead.

Logical Structure

Logical structures defines the reading order of a document, and can provide alternative text
for images and other visual content.

To define logical structure, you need to mark the structure content, keep a reference to it,
then incorporate it into a structure tree.

So far, PDFKit only supports marked content in the logical structure, not annotations, forms,
or anything else.

Example of marking structure content:

const myStructContent = doc.markStructureContent('P');
doc.text('Hello, world! ');
doc.endMarkedContent();

Example of the simplest of structure trees:

doc.addStructure(doc.struct('P', myStructContent));
Tags/element types to use are listed in a later section.

Note that to be conformant to Tagged PDF, all content not part of the logical structure should
be marked as Artifact.

Automatic Ending of Structure Content and Artifacts

Structure content does not nest, and is mutually exclusive with artifact content; marking
structure or artifact content will automatically end current marking of structure or artifact
content (and any descendent marking):

doc.markContent('Artifact', { type: "Layout" });
doc.rect(xl, yl, wl, hl);

const myStructContent = doc.markStructureContent('P');
doc.text('Hello, world! '");
doc.markContent('Artifact', { type: "Layout" });
doc.rect(x2, y2, w2, h2);

const myStructContent = doc.markStructureContent('P');
doc.markContent('Span');

doc.text('Bonjour, tout le monde! ');
doc.markContent('Artifact', { type: "Layout" });
doc.rect(x3, y3, w3, h3);

const myStructContent = doc.markStructureContent('P');
doc.text('Hello again! ');

Complex Structure

Multiple elements may be added directly to the document, or to structure elements, and may
nest:

const sectionl = doc.struct('Sect', [
doc.struct('P', [
someTextStructureContent,
doc.struct('Link', somelLinkStructureContent),
moreTextStructureContent
1
1)

const section2 = doc.struct('Sect', secondSectionStructureContent);

doc.addStructure(sectionl).addStructure(section2);

Incremental Construction of Structure

Structure can be built incrementally. Elements can optionally be (recursively) ended once
you have finished adding to them, allowing them to be flushed out as soon as possible:

const mySection = doc.struct('Sect');
doc.addStructure(mySection);

const myParagraph = doc.struct('P');
mySection.add(myParagraph);

const myParagraphContent = doc.markStructureContent('P');
myParagraph.add(myParagraphContent) ;
doc.text('Hello, world! ');

myParagraph.end();

Note that if you provide children when creating a structure element (i.e. providing them to
doc.struct() rather than using structElem.add()) then structElem.end() is called
automatically. You therefore cannot add additional children with structElem.add(), i.e. you
cannot mix atomic and incremental styles for the same structure element.

For an element to be flushed out, it must:

be ended,
have been added to its parent, and

if it has content defined through closures (see next section), be attached to the document's
structure (through its ancestors)

When you call doc.end (), the document's structure is recursively ended, resulting in all
elements being flushed out. If you created elements but forgot to add them to the
document's structure, they will not be flushed, but the PDF stream will wait for them to be
flushed before ending, causing your application to hang. Make sure if you create any

elements, you add them to a parent, so ultimately all elements are attached to the document.
It's best to add elements to their parents as you go.

Shortcut for Elements Containing Only Marked Content

The common case where a structure element contains only content marked with a tag
matching the structure element type can be achieved by using a closure:

doc.addStructure(doc.struct('P', () => {
doc.text('Hello, world! ');
1)

This is equivalent to:

const myStruct = doc.struct('P');
doc.addStructure(myStruct);

const myStructContent = doc.markStructureContent('P');
doc.text('Hello, world! ');

doc.endMarkedContent();

myStruct.add(myStructContent);

myStruct.end();

Note that the content is marked and the closure is executed if/when the element is attached

to the document's structure o)
. This means that you can do something like this:

const myParagraph = doc.struct('P', [
() => { doc.text("Please see ", { continued: true }); 1},
doc.struct('Link', () => {
doc.text("something", { link: "http://www.example.com/", continued: true });

1),
() => { doc.text(" for details. ", { link: null }); }

IDH
and no content will be added to the page until/unless something like this is done:

doc.addStructure(sectionl);
sectionl.add(myParagraph);

or alternatively:

sectionl.add(myParagraph);
doc.addStructure(sectionl);

This is important because otherwise when the Link element is constructed, its content will
be added to the page, and then the list containing the link element will be passed to the
construct the p element, and only during the construction of the p element will the other P
content be added to the page, resulting in page content being out of order. It's best to add
elements to their parents as you go.

Structure Element Options

When creating a structure element, you can provide options:

title - title of the structure element (e.g. "Chapter 1")

lang - human language code (e.g. en-Au) which overrides default document language
alt - alternative text for an image or other visual content
expanded - the expanded form of an abbreviation or acronym

actual - the actual text the content represents (e.g. if it is rendered as vector graphics)

Example of a structure tree with options specified:

const titlePage = doc.struct('Sect', {
title: 'Title Page'
b [
doc.struct('H', [
doc.struct('Span', {
expanded: 'Portable Document Format for Universal Accessibility',
actual: 'PDF/UA'
3, 0
pdfUAStructureContent
1,
doc.struct('Span', {
actual: 'in a Nutshell'
b, 0
inANutshellStructureContent
1,
1,
doc.struct('Figure', {
alt: 'photo of a concrete path with tactile paving'
b L
photoStructureContent
1
13

Automatic Marking and Structure Construction for Text

The text () method accepts a structParent option which you can use to specify a structure
element to add each paragraph to. It will mark each paragraph of content, create a structure
element for it, and then add it to the parent element you provided. It will use the P type,
unless you specify a different type with a structType option.

Example of creating structure automatically with text():

const section = doc.struct('Sect');
doc.addStructure(section);
doc.text("Foo. \nBar. ", { structParent: section });

This is equivalent to:

const section = doc.struct('Sect');
doc.addStructure(section);

section.add(doc.struct('P', () => { doc.text("Foo. "); 1});
section.add(doc.struct('P', () => { doc.text("Bar. "); 1});

The 14ist() method also accepts a structParent option. By default, it add list items (type LI
) to the parent, each of which contains a label (type Lb1, which holds the bullet, number, or

letter) and a body (type LBody, which holds the actual item content). You can override the
default types with a structTypes option, which is a list: [itemType, labelType,

bodyType].You can make any of the types null to omit that part of the structure (i.e. to add
labels and bodies directly to the parent, and/or to collapse the label and body into a single
element).

Example of creating structure automatically with list():
const list = doc.struct('List');

someElement.add(list);
doc.list(["Foo. ", "Bar. "], { structParent: list 1});

Tags and Structure Element Types

Here are the tags and structure element types which are defined in Tagged PDF. You must
ensure you give them with the correct capitalisation.

Tagged PDF also supports custom types which map to standard types, but PDFKit does not
have support for this.

Non-structure tags:

Artifact - used to mark all content not part of the logical structure

ReversedChars - every string of text has characters in reverse order for technical reasons
(due to how fonts work for right-to-left languages); strings may have spaces at the
beginning or end to separate words, but may not have spaces in the middle

"Grouping" elements:

Document - whole document; must be used if there are multiple parts or articles

Part - part of a document

Art - article

Sect - section; may nest

D1iv - generic division

BlockQuote - block quotation

Caption - describing a figure or table

ToC - table of contents, may be nested, and may be used for lists of figures, tables, etc.
TocCI - table of contents (leaf) item

Index - index (text with accompanying Reference content)

NonStruct - non-structural grouping element (element itself not intended to be exported to
other formats like HTML, but 'transparent' to its content which is processed normally)

Private - content only meaningful to the creator (element and its content not intended to
be exported to other formats like HTML)

"Block" elements:

H - heading (first element in a section, etc.)

H1 to H6 - heading of a particular level intended for use only if nesting sections is not
possible for some reason

P - paragraph

L - list; should include optional Caption, and list items
LI - list item; should contain Lb1 and/or LBody

Lb1 - label (bullet, number, or "dictionary headword")

LBody - list body (item text, or "dictionary definition"); may have nested lists or other blocks

"Table" elements:

Table - table; should either contain TR, or THead, TBody and/or TFoot
TR - table row

TH - table heading cell

TD - table data cell

THead - table header row group

TBody - table body row group; may have more than one per table

TFoot - table footer row group

"Inline" elements:

Span - generic inline content
Quote - inline quotation
Note - e.g. footnote; may have a Lb1 (see "block" elements)

Reference - content in a document that refers to other content (e.g. page number in an
index)

BibEntry - bibliography entry; may have a Lb1 (see "block" elements)
Code - code

Link - hyperlink; should contain a link annotation

Annot - annotation (other than a link)

Ruby - Chinese/Japanese pronunciation/explanation

RB - Ruby base text

RT - Ruby annotation text

RP - Ruby punctuation

Warichu - Japanese/Chinese longer description

WT - Warichu text

wpP - Warichu punctuation

"Mlustration" elements (should have alt and/or actualtext set):

Figure - figure
Formula - formula

Form - form widget

You made it!

That's all there is to creating PDF documents in PDFKit. It's really quite simple to create
beautiful multi-page printable documents using Node.js!

This guide was generated from Markdown files using a PDFKit generation script. The
examples are actually run to generate the output shown inline. The script generates both the
website and the PDF guide, and can be found on Github. Check it out if you want to see an
example of a slightly more complicated renderer using a parser for Markdown and a syntax
highlighter.

If you have any questions about what you've learned in this guide, please don't hesitate to
ask the author or post an issue on Github. Enjoy!

https://github.com/foliojs/pdfkit/blob/master/docs/generate.js
https://twitter.com/devongovett
https://github.com/foliojs/pdfkit/issues

	PDFKit Guide
	Getting Started with PDFKit
	Using PDFKit in the browser
	Adding pages
	Switching to previous pages
	Setting default font
	Setting document metadata
	Encryption and Access Privileges

	Paper Sizes
	Vector Graphics in PDFKit
	An introduction to vector graphics
	SVG paths
	Shape helpers
	Fill and stroke styles
	Line cap and line join
	Dashed lines
	Color
	Gradients
	Winding rules
	Saving and restoring the graphics stack
	Clipping

	Text in PDFKit
	The basics
	Line wrapping and justification
	Text styling
	Text measurements
	Lists
	Rich Text
	Fonts

	Images in PDFKit
	Outlines in PDFKit
	Options

	Annotations in PDFKit
	Destinations
	Attachments in PDFKit
	Embedded Files
	File Annotations

	Accessibility
	Marked Content
	Logical Structure
	Tags and Structure Element Types

	You made it!

