node-opencv/src/Calib3D.cc

449 lines
13 KiB
C++

#include "Calib3D.h"
#include "Matrix.h"
inline Local<Object> matrixFromMat(cv::Mat &input)
{
Local<Object> matrixWrap = NanNew(Matrix::constructor)->GetFunction()->NewInstance();
Matrix *matrix = ObjectWrap::Unwrap<Matrix>(matrixWrap);
matrix->mat = input;
return matrixWrap;
}
inline cv::Mat matFromMatrix(Handle<Value> matrix)
{
Matrix* m = ObjectWrap::Unwrap<Matrix>(matrix->ToObject());
return m->mat;
}
inline cv::Size sizeFromArray(Handle<Value> jsArray)
{
cv::Size patternSize;
if (jsArray->IsArray())
{
Local<Object> v8sz = jsArray->ToObject();
patternSize = cv::Size(v8sz->Get(0)->IntegerValue(), v8sz->Get(1)->IntegerValue());
}
else
{
JSTHROW_TYPE("Size is not a valid array");
}
return patternSize;
}
inline std::vector<cv::Point2f> points2fFromArray(Handle<Value> array)
{
std::vector<cv::Point2f> points;
if(array->IsArray())
{
Local<Array> pointsArray = Local<Array>::Cast(array->ToObject());
for(unsigned int i = 0; i < pointsArray->Length(); i++)
{
Local<Object> pt = pointsArray->Get(i)->ToObject();
points.push_back(cv::Point2f(pt->Get(NanNew<String>("x"))->ToNumber()->Value(),
pt->Get(NanNew<String>("y"))->ToNumber()->Value()));
}
}
else
{
JSTHROW_TYPE("Points not a valid array");
}
return points;
}
inline std::vector<cv::Point3f> points3fFromArray(Handle<Value> array)
{
std::vector<cv::Point3f> points;
if(array->IsArray()) {
Local<Array> pointsArray = Local<Array>::Cast(array->ToObject());
for(unsigned int i = 0; i < pointsArray->Length(); i++)
{
Local<Object> pt = pointsArray->Get(i)->ToObject();
points.push_back(cv::Point3f(pt->Get(NanNew<String>("x"))->ToNumber()->Value(),
pt->Get(NanNew<String>("y"))->ToNumber()->Value(),
pt->Get(NanNew<String>("z"))->ToNumber()->Value()));
}
}
else
{
JSTHROW_TYPE("Must pass array of object points for each frame")
}
return points;
}
inline std::vector<std::vector<cv::Point2f> > points2fFromArrayOfArrays(Handle<Value> array)
{
std::vector<std::vector<cv::Point2f> > points;
if(array->IsArray())
{
Local<Array> pointsArray = Local<Array>::Cast(array->ToObject());
for(unsigned int i = 0; i < pointsArray->Length(); i++)
{
points.push_back(points2fFromArray(pointsArray->Get(i)));
}
}
else
{
JSTHROW_TYPE("Must pass array of object points for each frame")
}
return points;
}
inline std::vector<std::vector<cv::Point3f> > points3fFromArrayOfArrays(Handle<Value> array)
{
std::vector<std::vector<cv::Point3f> > points;
if(array->IsArray())
{
Local<Array> pointsArray = Local<Array>::Cast(array->ToObject());
for(unsigned int i = 0; i < pointsArray->Length(); i++)
{
points.push_back(points3fFromArray(pointsArray->Get(i)));
}
}
else
{
JSTHROW_TYPE("Must pass array of object points for each frame")
}
return points;
}
void Calib3D::Init(Handle<Object> target)
{
Persistent<Object> inner;
Local<Object> obj = NanNew<Object>();
NanAssignPersistent(inner, obj);
NODE_SET_METHOD(obj, "findChessboardCorners", FindChessboardCorners);
NODE_SET_METHOD(obj, "drawChessboardCorners", DrawChessboardCorners);
NODE_SET_METHOD(obj, "calibrateCamera", CalibrateCamera);
NODE_SET_METHOD(obj, "solvePnP", SolvePnP);
NODE_SET_METHOD(obj, "getOptimalNewCameraMatrix", GetOptimalNewCameraMatrix);
NODE_SET_METHOD(obj, "stereoCalibrate", StereoCalibrate);
target->Set(NanNew("calib3d"), obj);
}
// cv::findChessboardCorners
NAN_METHOD(Calib3D::FindChessboardCorners)
{
NanEscapableScope();
try {
// Get the arguments from javascript
// Arg 0 is the image
cv::Mat mat = matFromMatrix(args[0]);
// Arg 1 is the pattern size
cv::Size patternSize = sizeFromArray(args[1]);
// Arg 2 would normally be the flags, ignoring this for now and using the default flags
// Find the corners
std::vector<cv::Point2f> corners;
bool found = cv::findChessboardCorners(mat, patternSize, corners);
// Make the return value
Local<Object> ret = NanNew<Object>();
ret->Set(NanNew<String>("found"), NanNew<Boolean>(found));
Local<Array> cornersArray = NanNew<Array>(corners.size());
for(unsigned int i = 0; i < corners.size(); i++)
{
Local<Object> point_data = NanNew<Object>();
point_data->Set(NanNew<String>("x"), NanNew<Number>(corners[i].x));
point_data->Set(NanNew<String>("y"), NanNew<Number>(corners[i].y));
cornersArray->Set(NanNew<Number>(i), point_data);
}
ret->Set(NanNew<String>("corners"), cornersArray);
NanReturnValue(ret);
} catch (cv::Exception &e) {
const char *err_msg = e.what();
NanThrowError(err_msg);
NanReturnUndefined();
}
};
// cv::drawChessboardCorners
NAN_METHOD(Calib3D::DrawChessboardCorners)
{
NanEscapableScope();
try {
// Get the arguments
// Arg 0 is the image
cv::Mat mat = matFromMatrix(args[0]);
// Arg 1 is the pattern size
cv::Size patternSize = sizeFromArray(args[1]);
// Arg 2 is the corners array
std::vector<cv::Point2f> corners = points2fFromArray(args[2]);
// Arg 3, pattern found boolean
bool patternWasFound = args[3]->ToBoolean()->Value();
// Draw the corners
cv::drawChessboardCorners(mat, patternSize, corners, patternWasFound);
// Return the passed image, now with corners drawn on it
NanReturnValue(args[0]);
} catch (cv::Exception &e) {
const char *err_msg = e.what();
NanThrowError(err_msg);
NanReturnUndefined();
}
}
// cv::calibrateCamera
NAN_METHOD(Calib3D::CalibrateCamera)
{
NanEscapableScope();
try {
// Get the arguments
// Arg 0, the array of object points, an array of arrays
std::vector<std::vector<cv::Point3f> > objectPoints = points3fFromArrayOfArrays(args[0]);
// Arg 1, the image points, another array of arrays
std::vector<std::vector<cv::Point2f> > imagePoints = points2fFromArrayOfArrays(args[1]);
// Arg 2, the image size
cv::Size imageSize = sizeFromArray(args[2]);
// Arg 3, 4, input guesses for the camrea matrix and distortion coefficients, skipping for now
cv::Mat K, dist;
// Arg 5, 6 flags and termination criteria, skipping for now
// Calibrate the camera
std::vector<cv::Mat> rvecs, tvecs;
double error = cv::calibrateCamera(objectPoints, imagePoints, imageSize, K, dist, rvecs, tvecs);
// make the return values
Local<Object> ret = NanNew<Object>();
// Reprojection error
ret->Set(NanNew<String>("reprojectionError"), NanNew<Number>(error));
// K
Local<Object> KMatrixWrap = matrixFromMat(K);
ret->Set(NanNew<String>("K"), KMatrixWrap);
// dist
Local<Object> distMatrixWrap = matrixFromMat(dist);
ret->Set(NanNew<String>("distortion"), distMatrixWrap);
// Per frame R and t, skiping for now
// Return
NanReturnValue(ret);
} catch (cv::Exception &e) {
const char *err_msg = e.what();
NanThrowError(err_msg);
NanReturnUndefined();
}
}
// cv::solvePnP
NAN_METHOD(Calib3D::SolvePnP)
{
NanEscapableScope();
try {
// Get the arguments
// Arg 0, the array of object points
std::vector<cv::Point3f> objectPoints = points3fFromArray(args[0]);
// Arg 1, the image points
std::vector<cv::Point2f> imagePoints = points2fFromArray(args[1]);
// Arg 2, the camera matrix
cv::Mat K = matFromMatrix(args[2]);
// Arg 3, the distortion coefficients
cv::Mat dist = matFromMatrix(args[3]);
// Arg 4, use extrinsic guess, skipped for now
// Arg 5, flags, skip for now
// solve for r and t
cv::Mat rvec, tvec;
cv::solvePnP(objectPoints, imagePoints, K, dist, rvec, tvec);
// make the return values
Local<Object> ret = NanNew<Object>();
// rvec
Local<Object> rMatrixWrap = matrixFromMat(rvec);
ret->Set(NanNew<String>("rvec"), rMatrixWrap);
// tvec
Local<Object> tMatrixWrap = matrixFromMat(tvec);
ret->Set(NanNew<String>("tvec"), tMatrixWrap);
// Return
NanReturnValue(ret);
} catch (cv::Exception &e) {
const char *err_msg = e.what();
NanThrowError(err_msg);
NanReturnUndefined();
}
}
// cv::getOptimalNewCameraMAtrix
NAN_METHOD(Calib3D::GetOptimalNewCameraMatrix)
{
NanEscapableScope();
try {
// Get the arguments
// Arg 0 is the original camera matrix
cv::Mat Kin = matFromMatrix(args[0]);
// Arg 1 is the distortion coefficients
cv::Mat dist = matFromMatrix(args[1]);
// Arg 2, the image size
cv::Size imageSize = sizeFromArray(args[2]);
// Arg 3 is the alpha free scaling parameter
double alpha = args[3]->ToNumber()->Value();
// Arg 4, the new image size
cv::Size newImageSize = sizeFromArray(args[4]);
// Arg 5, valid ROI, skip for now
// Arg 6, center principal point, skip for now
// Get the optimal new camera matrix
cv::Mat Kout = cv::getOptimalNewCameraMatrix(Kin, dist, imageSize, alpha, newImageSize);
// Wrap the output K
Local<Object> KMatrixWrap = matrixFromMat(Kout);
// Return the new K matrix
NanReturnValue(KMatrixWrap);
} catch (cv::Exception &e) {
const char *err_msg = e.what();
NanThrowError(err_msg);
NanReturnUndefined();
}
}
// cv::stereoCalibrate
NAN_METHOD(Calib3D::StereoCalibrate)
{
NanEscapableScope();
try {
// Get the arguments
// Arg 0, the array of object points, an array of arrays
std::vector<std::vector<cv::Point3f> > objectPoints = points3fFromArrayOfArrays(args[0]);
// Arg 1, the image points1, another array of arrays
std::vector<std::vector<cv::Point2f> > imagePoints1 = points2fFromArrayOfArrays(args[1]);
// Arg 2, the image points2, another array of arrays =(
std::vector<std::vector<cv::Point2f> > imagePoints2 = points2fFromArrayOfArrays(args[2]);
// Arg 3 is the image size (follows the PYTHON api not the C++ api since all following arguments are optional or outputs)
cv::Size imageSize = sizeFromArray(args[3]);
// Arg 4,5,6,7 is the camera matrix and distortion coefficients (optional but must pass all 4 or none)
cv::Mat k1, d1, k2, d2;
if(args.Length() >= 8)
{
k1 = matFromMatrix(args[4]);
d1 = matFromMatrix(args[5]);
k2 = matFromMatrix(args[6]);
d2 = matFromMatrix(args[7]);
}
// Last argument is flags, skipping for now
// Output mats
cv::Mat R, t, E, F;
// Do the stereo calibration
cv::stereoCalibrate(objectPoints, imagePoints1, imagePoints2, k1, d1, k2, d2, imageSize, R, t, E, F);
// make the return value
Local<Object> ret = NanNew<Object>();
// Make the output arguments
// k1
Local<Object> K1MatrixWrap = matrixFromMat(k1);
// d1
Local<Object> d1MatrixWrap = matrixFromMat(d1);
// k2
Local<Object> K2MatrixWrap = matrixFromMat(k2);
// d2
Local<Object> d2MatrixWrap = matrixFromMat(d2);
// R
Local<Object> RMatrixWrap = matrixFromMat(R);
// t
Local<Object> tMatrixWrap = matrixFromMat(t);
// E
Local<Object> EMatrixWrap = matrixFromMat(E);
// F
Local<Object> FMatrixWrap = matrixFromMat(F);
// Add to return object
ret->Set(NanNew<String>("K1"), K1MatrixWrap);
ret->Set(NanNew<String>("distortion1"), d1MatrixWrap);
ret->Set(NanNew<String>("K2"), K2MatrixWrap);
ret->Set(NanNew<String>("distortion2"), d2MatrixWrap);
ret->Set(NanNew<String>("R"), RMatrixWrap);
ret->Set(NanNew<String>("t"), tMatrixWrap);
ret->Set(NanNew<String>("E"), EMatrixWrap);
ret->Set(NanNew<String>("F"), FMatrixWrap);
// Return
NanReturnValue(ret);
} catch (cv::Exception &e) {
const char *err_msg = e.what();
NanThrowError(err_msg);
NanReturnUndefined();
}
}