mirror of
https://github.com/peterbraden/node-opencv.git
synced 2025-12-08 19:45:55 +00:00
179 lines
4.5 KiB
C++
Executable File
179 lines
4.5 KiB
C++
Executable File
#include "CascadeClassifierWrap.h"
|
|
#include "OpenCV.h"
|
|
#include "Matrix.h"
|
|
|
|
|
|
void AsyncDetectMultiScale(uv_work_t *req);
|
|
void AfterAsyncDetectMultiScale(uv_work_t *req);
|
|
|
|
Persistent<FunctionTemplate> CascadeClassifierWrap::constructor;
|
|
|
|
void
|
|
CascadeClassifierWrap::Init(Handle<Object> target) {
|
|
HandleScope scope;
|
|
|
|
// Constructor
|
|
constructor = Persistent<FunctionTemplate>::New(FunctionTemplate::New(CascadeClassifierWrap::New));
|
|
constructor->InstanceTemplate()->SetInternalFieldCount(1);
|
|
constructor->SetClassName(String::NewSymbol("CascadeClassifier"));
|
|
|
|
// Prototype
|
|
//Local<ObjectTemplate> proto = constructor->PrototypeTemplate();
|
|
|
|
NODE_SET_PROTOTYPE_METHOD(constructor, "detectMultiScale", DetectMultiScale);
|
|
|
|
|
|
|
|
target->Set(String::NewSymbol("CascadeClassifier"), constructor->GetFunction());
|
|
};
|
|
|
|
NAN_METHOD(CascadeClassifierWrap::New() {
|
|
HandleScope scope;
|
|
|
|
if (args.This()->InternalFieldCount() == 0)
|
|
return v8::ThrowException(v8::Exception::TypeError(v8::String::New("Cannot Instantiate without new")));
|
|
|
|
CascadeClassifierWrap *pt = new CascadeClassifierWrap(*args[0]);
|
|
pt->Wrap(args.This());
|
|
return args.This();
|
|
}
|
|
|
|
|
|
CascadeClassifierWrap::CascadeClassifierWrap(v8::Value* fileName){
|
|
std::string filename;
|
|
filename = std::string(*v8::String::AsciiValue(fileName->ToString()));
|
|
|
|
|
|
if (!cc.load(filename.c_str())){
|
|
v8::ThrowException(v8::Exception::TypeError(v8::String::New("Error loading file")));
|
|
}
|
|
}
|
|
|
|
struct classifier_baton_t {
|
|
CascadeClassifierWrap *cc;
|
|
Persistent<Function> cb;
|
|
Matrix *im;
|
|
double scale;
|
|
int neighbors;
|
|
int minw;
|
|
int minh;
|
|
int sleep_for;
|
|
std::vector<cv::Rect> res;
|
|
|
|
uv_work_t request;
|
|
};
|
|
|
|
|
|
NAN_METHOD(CascadeClassifierWrap::DetectMultiScale){
|
|
HandleScope scope;
|
|
|
|
CascadeClassifierWrap *self = ObjectWrap::Unwrap<CascadeClassifierWrap>(args.This());
|
|
|
|
if (args.Length() < 2){
|
|
v8::ThrowException(v8::Exception::TypeError(v8::String::New("detectMultiScale takes at least 2 args")));
|
|
}
|
|
|
|
Matrix *im = ObjectWrap::Unwrap<Matrix>(args[0]->ToObject());
|
|
REQ_FUN_ARG(1, cb);
|
|
|
|
double scale = 1.1;
|
|
if (args.Length() > 2 && args[2]->IsNumber())
|
|
scale = args[2]->NumberValue();
|
|
|
|
int neighbors = 2;
|
|
if (args.Length() > 3 && args[3]->IsInt32())
|
|
neighbors = args[3]->IntegerValue();
|
|
|
|
int minw = 30;
|
|
int minh = 30;
|
|
if (args.Length() > 5 && args[4]->IsInt32() && args[5]->IsInt32()){
|
|
minw = args[4]->IntegerValue();
|
|
minh = args[5]->IntegerValue();
|
|
}
|
|
|
|
|
|
classifier_baton_t *baton = new classifier_baton_t();
|
|
baton->cc = self;
|
|
baton->cb = Persistent<Function>::New(cb);
|
|
baton->im = im;
|
|
baton->scale = scale;
|
|
baton->neighbors = neighbors;
|
|
baton->minw = minw;
|
|
baton->minh = minh;
|
|
baton->sleep_for = 1;
|
|
baton->request.data = baton;
|
|
// self->Ref();
|
|
|
|
// eio_custom(EIO_DetectMultiScale, EIO_PRI_DEFAULT, EIO_AfterDetectMultiScale, baton);
|
|
// ev_ref(EV_DEFAULT_UC);
|
|
|
|
uv_queue_work(uv_default_loop(), &baton->request, AsyncDetectMultiScale, (uv_after_work_cb)AfterAsyncDetectMultiScale);
|
|
|
|
return Undefined();
|
|
|
|
|
|
}
|
|
|
|
|
|
void AsyncDetectMultiScale(uv_work_t *req) {
|
|
classifier_baton_t *baton = static_cast<classifier_baton_t *>(req->data);
|
|
|
|
// sleep(baton->sleep_for);
|
|
|
|
std::vector<cv::Rect> objects;
|
|
|
|
cv::Mat gray;
|
|
|
|
if(baton->im->mat.channels() != 1)
|
|
cvtColor(baton->im->mat, gray, CV_BGR2GRAY);
|
|
|
|
|
|
equalizeHist( gray, gray);
|
|
baton->cc->cc.detectMultiScale(gray, objects, baton->scale, baton->neighbors, 0 | CV_HAAR_SCALE_IMAGE, cv::Size(baton->minw, baton->minh));
|
|
|
|
baton->res = objects;
|
|
|
|
|
|
}
|
|
|
|
void AfterAsyncDetectMultiScale(uv_work_t *req) {
|
|
|
|
HandleScope scope;
|
|
classifier_baton_t *baton = static_cast<classifier_baton_t *>(req->data);
|
|
// ev_unref(EV_DEFAULT_UC);
|
|
// baton->cc->Unref();
|
|
|
|
Local<Value> argv[2];
|
|
|
|
argv[0] = Local<Value>::New(Null());
|
|
|
|
|
|
v8::Local<v8::Array> arr = v8::Array::New(baton->res.size());
|
|
|
|
for(unsigned int i = 0; i < baton->res.size(); i++ ){
|
|
v8::Local<v8::Object> x = v8::Object::New();
|
|
x->Set(v8::String::New("x"), v8::Number::New(baton->res[i].x));
|
|
x->Set(v8::String::New("y"), v8::Number::New(baton->res[i].y));
|
|
x->Set(v8::String::New("width"), v8::Number::New(baton->res[i].width));
|
|
x->Set(v8::String::New("height"), v8::Number::New(baton->res[i].height));
|
|
arr->Set(i, x);
|
|
}
|
|
|
|
argv[1] = arr;
|
|
|
|
TryCatch try_catch;
|
|
|
|
baton->cb->Call(Context::GetCurrent()->Global(), 2, argv);
|
|
|
|
if (try_catch.HasCaught()) {
|
|
FatalException(try_catch);
|
|
}
|
|
|
|
baton->cb.Dispose();
|
|
|
|
delete baton;
|
|
|
|
// return 0;
|
|
}
|
|
|