mirror of
https://github.com/peterbraden/node-opencv.git
synced 2025-12-08 19:45:55 +00:00
With OpenCV >3.1 and 2.4.13, OpenCV can now be installed without specific modules. This makes it so that `node-opencv` will still be able to compile.
272 lines
6.9 KiB
JavaScript
Executable File
272 lines
6.9 KiB
JavaScript
Executable File
var Stream = require('stream').Stream
|
|
, Buffers = require('buffers')
|
|
, util = require('util')
|
|
, path = require('path')
|
|
, os = require('os');
|
|
|
|
var cv = module.exports = require('./bindings');
|
|
|
|
var Matrix = cv.Matrix
|
|
, ImageStream
|
|
, ImageDataStream
|
|
, ObjectDetectionStream
|
|
, VideoStream;
|
|
|
|
|
|
if (cv.CascadeClassifier) {
|
|
Matrix.prototype.detectObject = function(classifier, opts, cb){
|
|
var face_cascade;
|
|
opts = opts || {};
|
|
cv._detectObjectClassifiers = cv._detectObjectClassifiers || {};
|
|
|
|
if (!(face_cascade = cv._detectObjectClassifiers[classifier])){
|
|
face_cascade = new cv.CascadeClassifier(classifier);
|
|
cv._detectObjectClassifiers[classifier] = face_cascade;
|
|
}
|
|
|
|
face_cascade.detectMultiScale(this, cb, opts.scale, opts.neighbors
|
|
, opts.min && opts.min[0], opts.min && opts.min[1]);
|
|
}
|
|
} else {
|
|
cv.Matrix.prototype.detectObject = function() {
|
|
throw new Error("You need to install OpenCV with OBJDETECT module");
|
|
}
|
|
}
|
|
|
|
|
|
cv.Matrix.prototype.inspect = function(){
|
|
var size = (this.size()||[]).join('x');
|
|
return "[ Matrix " + size + " ]";
|
|
}
|
|
|
|
// we use the Opencv constants naming convention to extract the number of bytes (8, 16, 32, 64), and the number of channels from constants names
|
|
var getNumberOfBytesAndChannelsPerType = function(type){
|
|
var regExp = /CV_([0-9]+)([A-Z]+)([0-9]+)/;
|
|
for(var k in cv.Constants) if(cv.Constants.hasOwnProperty(k) && k.match(regExp) && cv.Constants[k] === type){
|
|
var bytes, channels, dataType;
|
|
k.replace(regExp, function(all, b, l, c){
|
|
bytes = b;
|
|
channels = c;
|
|
dataType = l[0]
|
|
});
|
|
|
|
return {
|
|
bytes : parseInt(bytes),
|
|
channels : !isNaN(parseInt(channels)) && parseInt(channels),
|
|
dataType : dataType,
|
|
label : k
|
|
};
|
|
}
|
|
};
|
|
|
|
var getBufferMethodName = function(bytes, dataType, endianness, read){
|
|
var fnName;
|
|
|
|
if(read){
|
|
fnName = "read";
|
|
} else {
|
|
fnName = "write";
|
|
}
|
|
|
|
if (bytes === 32 && (dataType === "F" || dataType === "S")){
|
|
if(dataType === "F"){
|
|
fnName += "Float"+endianness;
|
|
} else {//dataType === "S"
|
|
fnName += "Int32"+endianness;
|
|
}
|
|
} else if(bytes === 8){
|
|
fnName += (dataType === "U" ? "U" : "")+"Int8";
|
|
} else if(bytes === 16){
|
|
fnName += (dataType === "U" ? "U" : "")+"Int16"+endianness;
|
|
} else {
|
|
throw("This matrix type (CV_"+bytes+dataType+") is not compatible with fromArray/toArray")
|
|
}
|
|
return fnName;
|
|
};
|
|
|
|
Matrix.fromArray = function(arr, type){
|
|
var n_bytes;
|
|
|
|
var bytesAndChannels = getNumberOfBytesAndChannelsPerType(type);
|
|
var bytes = bytesAndChannels.bytes;
|
|
var channels = bytesAndChannels.channels;
|
|
var dataType = bytesAndChannels.dataType;
|
|
var label = bytesAndChannels.label;
|
|
|
|
if(!Array.isArray(arr) ||!Array.isArray(arr[0]) || !Array.isArray(arr[0][0]) || (channels && arr[0][0].length !== channels)) {
|
|
throw(new Error("Input array must be a 3-level array/matrix with size rows x cols x channels corresponding to dataType ("+label+")"));
|
|
}
|
|
|
|
if(!channels){
|
|
channels = 1;
|
|
}
|
|
|
|
var rows = arr.length;
|
|
var cols = arr[0].length;
|
|
|
|
var mat = new cv.Matrix(rows, cols, type);
|
|
|
|
var n_bytes = bytes/8;
|
|
var buf = new Buffer(rows * cols * channels * n_bytes);
|
|
|
|
buf.fill(0);
|
|
|
|
var fnName = getBufferMethodName(bytes, dataType, os.endianness(), false)
|
|
|
|
for(var i=0;i<rows * cols * channels;i++){
|
|
var c = i%channels;
|
|
var r = Math.floor(i/channels);
|
|
var y = r%cols;
|
|
var x = Math.floor(r/cols);
|
|
buf[fnName](arr[x][y][c], i*n_bytes);
|
|
}
|
|
|
|
mat.put(buf);
|
|
|
|
return mat;
|
|
}
|
|
|
|
Matrix.prototype.toArray = function(){
|
|
var size = this.size();
|
|
var buf = this.getData();
|
|
var type = this.type();
|
|
var bytesAndChannels = getNumberOfBytesAndChannelsPerType(type);
|
|
var bytes = bytesAndChannels.bytes;
|
|
var channels = bytesAndChannels.channels || this.channels();
|
|
var dataType = bytesAndChannels.dataType;
|
|
|
|
var n_bytes = bytes/8;
|
|
var fnName = getBufferMethodName(bytes, dataType, os.endianness(), true)
|
|
|
|
var res = []
|
|
for(var i = 0; i < size[0]; i++){
|
|
var row = [];
|
|
for(var j = 0; j < size[1]; j++){
|
|
var channelsValues = [];
|
|
for(var k = 0; k < channels; k++){
|
|
var index = (i*size[1]+j)*channels+k;
|
|
channelsValues.push(buf[fnName](index*n_bytes));
|
|
}
|
|
row.push(channelsValues);
|
|
}
|
|
res.push(row);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
ImageStream = cv.ImageStream = function(){
|
|
this.writable = true;
|
|
}
|
|
util.inherits(ImageStream, Stream);
|
|
|
|
|
|
ImageStream.prototype.write = function(buf){
|
|
var self = this;
|
|
cv.readImage(buf, function(err, matrix){
|
|
if (err) return self.emit('error', err);
|
|
self.emit('data', matrix);
|
|
});
|
|
}
|
|
|
|
|
|
ImageDataStream = cv.ImageDataStream = function(){
|
|
this.data = Buffers([]);
|
|
this.writable = true;
|
|
}
|
|
util.inherits(ImageDataStream, Stream);
|
|
|
|
|
|
ImageDataStream.prototype.write = function(buf){
|
|
this.data.push(buf);
|
|
return true;
|
|
}
|
|
|
|
|
|
ImageDataStream.prototype.end = function(b){
|
|
var self = this;
|
|
if (b) ImageStream.prototype.write.call(this, b);
|
|
|
|
var buf = this.data.toBuffer();
|
|
cv.readImage(buf, function(err, im){
|
|
if (err) return self.emit('error', err);
|
|
self.emit('load', im);
|
|
});
|
|
}
|
|
|
|
if (cv.CascadeClassifier) {
|
|
ObjectDetectionStream = cv.ObjectDetectionStream = function(cascade, opts){
|
|
this.classifier = new cv.CascadeClassifier(cascade);
|
|
this.opts = opts || {};
|
|
this.readable = true;
|
|
this.writable = true;
|
|
}
|
|
util.inherits(ObjectDetectionStream, Stream);
|
|
|
|
ObjectDetectionStream.prototype.write = function(m){
|
|
var self = this;
|
|
this.classifier.detectMultiScale(m, function(err, objs){
|
|
if (err) return self.emit('error', err);
|
|
self.emit('data', objs, m);
|
|
}
|
|
, this.opts.scale
|
|
, this.opts.neighbors
|
|
, this.opts.min && this.opts.min[0]
|
|
, this.opts.min && this.opts.min[1]);
|
|
}
|
|
}
|
|
|
|
|
|
if (cv.VideoCapture) {
|
|
var VideoCapture = cv.VideoCapture
|
|
|
|
VideoStream = cv.VideoStream = function(src){
|
|
if (!(src instanceof VideoCapture)) src = new VideoCapture(src);
|
|
this.video = src;
|
|
this.readable = true;
|
|
this.paused = false;
|
|
}
|
|
util.inherits(VideoStream, Stream);
|
|
|
|
|
|
VideoStream.prototype.read = function(){
|
|
var self = this;
|
|
var frame = function(){
|
|
self.video.read(function(err, mat){
|
|
if (err) return self.emit('error', err);
|
|
self.emit('data', mat);
|
|
if (!self.paused) process.nextTick(frame);
|
|
})
|
|
}
|
|
|
|
frame();
|
|
}
|
|
|
|
VideoStream.prototype.pause = function(){
|
|
this.paused = true;
|
|
}
|
|
|
|
|
|
VideoStream.prototype.resume = function(){
|
|
this.paused = false;
|
|
this.read();
|
|
}
|
|
|
|
VideoCapture.prototype.toStream = function(){
|
|
return new VideoStream(this);
|
|
}
|
|
}
|
|
|
|
|
|
// Provide cascade data for faces etc.
|
|
var CASCADES = {
|
|
FACE_CASCADE: 'haarcascade_frontalface_alt.xml'
|
|
, EYE_CASCADE: 'haarcascade_eye.xml'
|
|
, EYEGLASSES_CASCADE: 'haarcascade_eye_tree_eyeglasses.xml'
|
|
, FULLBODY_CASCADE: 'haarcascade_fullbody.xml'
|
|
, CAR_SIDE_CASCADE: 'hogcascade_cars_sideview.xml'
|
|
}
|
|
|
|
Object.keys(CASCADES).forEach(function(k){
|
|
cv[k] = path.resolve(__dirname, '../data', CASCADES[k])
|
|
})
|