node-opencv/src/FaceRecognizer.cc
2013-03-15 15:28:58 -07:00

284 lines
7.4 KiB
C++

#include "FaceRecognizer.h"
#include "OpenCV.h"
#if CV_MAJOR_VERSION >= 2 && CV_MINOR_VERSION >=4
#include "Matrix.h"
#define EIGEN 0
#define LBPH 1
#define FISHER 2
// Todo, move somewhere useful
cv::Mat fromMatrixOrFilename(Local<Value> v){
cv::Mat im;
if (v->IsString()){
std::string filename = std::string(*v8::String::AsciiValue(v->ToString()));
im = cv::imread(filename);
//std::cout<< im.size();
} else {
Matrix *img = ObjectWrap::Unwrap<Matrix>(v->ToObject());
im = img->mat;
}
return im;
}
void AsyncPredict(uv_work_t *req);
void AfterAsyncPredict(uv_work_t *req);
Persistent<FunctionTemplate> FaceRecognizerWrap::constructor;
void
FaceRecognizerWrap::Init(Handle<Object> target) {
HandleScope scope;
// Constructor
constructor = Persistent<FunctionTemplate>::New(FunctionTemplate::New(FaceRecognizerWrap::New));
constructor->InstanceTemplate()->SetInternalFieldCount(1);
constructor->SetClassName(String::NewSymbol("FaceRecognizer"));
NODE_SET_METHOD(constructor, "createLBPHFaceRecognizer", CreateLBPH);
NODE_SET_METHOD(constructor, "createEigenFaceRecognizer", CreateEigen);
NODE_SET_METHOD(constructor, "createFisherFaceRecognizer", CreateFisher);
NODE_SET_PROTOTYPE_METHOD(constructor, "trainSync", TrainSync);
NODE_SET_PROTOTYPE_METHOD(constructor, "updateSync", UpdateSync);
NODE_SET_PROTOTYPE_METHOD(constructor, "predictSync", PredictSync);
NODE_SET_PROTOTYPE_METHOD(constructor, "saveSync", SaveSync);
NODE_SET_PROTOTYPE_METHOD(constructor, "loadSync", LoadSync);
NODE_SET_PROTOTYPE_METHOD(constructor, "getMat", GetMat);
target->Set(String::NewSymbol("FaceRecognizer"), constructor->GetFunction());
};
Handle<Value>
FaceRecognizerWrap::New(const Arguments &args) {
HandleScope scope;
if (args.This()->InternalFieldCount() == 0)
JSTHROW_TYPE("Cannot Instantiate without new")
// By default initialize LBPH
cv::Ptr<cv::FaceRecognizer> f = cv::createLBPHFaceRecognizer(1, 8, 8, 8, 80.0);
FaceRecognizerWrap *pt = new FaceRecognizerWrap(f, LBPH);
pt->Wrap(args.This());
return args.This();
}
Handle<Value>
FaceRecognizerWrap::CreateLBPH(const Arguments &args) {
HandleScope scope;
int radius = 1;
int neighbors = 8;
int grid_x = 8;
int grid_y = 8;
double threshold = 80;
INT_FROM_ARGS(radius, 0)
INT_FROM_ARGS(neighbors, 1)
INT_FROM_ARGS(grid_x, 2)
INT_FROM_ARGS(grid_y, 3)
DOUBLE_FROM_ARGS(threshold, 4)
Local<Object> n = FaceRecognizerWrap::constructor->GetFunction()->NewInstance();
cv::Ptr<cv::FaceRecognizer> f = cv::createLBPHFaceRecognizer(
radius, neighbors, grid_x, grid_y, threshold
);
FaceRecognizerWrap *pt = new FaceRecognizerWrap(f, LBPH);
pt->Wrap(n);
return n;
}
Handle<Value>
FaceRecognizerWrap::CreateEigen(const Arguments &args) {
HandleScope scope;
int components = 0;
double threshold = DBL_MAX;
INT_FROM_ARGS(components, 0)
DOUBLE_FROM_ARGS(threshold, 1)
Local<Object> n = FaceRecognizerWrap::constructor->GetFunction()->NewInstance();
cv::Ptr<cv::FaceRecognizer> f = cv::createEigenFaceRecognizer(
components, threshold
);
FaceRecognizerWrap *pt = new FaceRecognizerWrap(f, EIGEN);
pt->Wrap(n);
return n;
}
Handle<Value>
FaceRecognizerWrap::CreateFisher(const Arguments &args) {
HandleScope scope;
int components = 0;
double threshold = DBL_MAX;
INT_FROM_ARGS(components, 0)
DOUBLE_FROM_ARGS(threshold, 1)
Local<Object> n = FaceRecognizerWrap::constructor->GetFunction()->NewInstance();
cv::Ptr<cv::FaceRecognizer> f = cv::createFisherFaceRecognizer(
components, threshold
);
FaceRecognizerWrap *pt = new FaceRecognizerWrap(f, FISHER);
pt->Wrap(n);
return n;
}
FaceRecognizerWrap::FaceRecognizerWrap(cv::Ptr<cv::FaceRecognizer> f, int type){
rec = f;
typ = type;
}
Handle<Value> UnwrapTrainingData(const Arguments& args, cv::vector<cv::Mat>* images, cv::vector<int>* labels){
if (args.Length() < 1 || !args[0]->IsArray()){
JSTHROW("FaceRecognizer.train takes a list of [<int> label, image] tuples")
}
// Iterate through [[label, image], ...] etc, and add matrix / label to vectors
const Local<Array> tuples = v8::Array::Cast(*args[0]);
const uint32_t length = tuples->Length();
for (uint32_t i=0 ; i<length ; ++i){
const Local<Value> val = tuples->Get(i);
if (!val->IsArray()){
JSTHROW("train takes a list of [label, image] tuples")
}
Local<Array> valarr = v8::Array::Cast(*val);
if (valarr->Length() != 2 || !valarr->Get(0)->IsInt32()){
JSTHROW("train takes a list of [label, image] tuples")
}
int label = valarr->Get(0)->Uint32Value();
cv::Mat im = fromMatrixOrFilename(valarr->Get(1));
im = im.clone();
cv::cvtColor(im, im, CV_RGB2GRAY);
labels->push_back(label);
images->push_back(im);
}
return v8::Undefined();
}
Handle<Value>
FaceRecognizerWrap::TrainSync(const Arguments& args){
SETUP_FUNCTION(FaceRecognizerWrap)
cv::vector<cv::Mat> images;
cv::vector<int> labels;
Handle<Value> exception = UnwrapTrainingData(args, &images, &labels);
if (!exception->IsUndefined()){
return exception;
}
self->rec->train(images, labels);
return scope.Close(v8::Undefined());
}
Handle<Value>
FaceRecognizerWrap::UpdateSync(const Arguments& args){
SETUP_FUNCTION(FaceRecognizerWrap)
if (self->typ == EIGEN){
JSTHROW("Eigen Recognizer does not support update")
}
if (self->typ == FISHER){
JSTHROW("Fisher Recognizer does not support update")
}
cv::vector<cv::Mat> images;
cv::vector<int> labels;
Handle<Value> exception = UnwrapTrainingData(args, &images, &labels);
if (!exception->IsUndefined()){
return exception;
}
self->rec->update(images, labels);
return scope.Close(v8::Undefined());
}
Handle<Value>
FaceRecognizerWrap::PredictSync(const Arguments& args){
SETUP_FUNCTION(FaceRecognizerWrap)
cv::Mat im = fromMatrixOrFilename(args[0]);//TODO CHECK!
cv::cvtColor(im, im, CV_RGB2GRAY);
// int predictedLabel = self->rec->predict(im);
int predictedLabel = -1;
double confidence = 0.0;
self->rec->predict(im, predictedLabel, confidence);
v8::Local<v8::Object> res = v8::Object::New();
res->Set(v8::String::New("id"), v8::Number::New(predictedLabel));
res->Set(v8::String::New("confidence"), v8::Number::New(confidence));
return scope.Close(res);
}
Handle<Value>
FaceRecognizerWrap::SaveSync(const Arguments& args){
SETUP_FUNCTION(FaceRecognizerWrap)
if (!args[0]->IsString()){
JSTHROW("Save takes a filename")
}
std::string filename = std::string(*v8::String::AsciiValue(args[0]->ToString()));
self->rec->save(filename);
return v8::Undefined();
}
Handle<Value>
FaceRecognizerWrap::LoadSync(const Arguments& args){
SETUP_FUNCTION(FaceRecognizerWrap)
if (!args[0]->IsString()){
JSTHROW("Load takes a filename")
}
std::string filename = std::string(*v8::String::AsciiValue(args[0]->ToString()));
self->rec->load(filename);
return v8::Undefined();
}
Handle<Value>
FaceRecognizerWrap::GetMat(const Arguments& args){
SETUP_FUNCTION(FaceRecognizerWrap)
if (!args[0]->IsString()){
JSTHROW("getMat takes a key")
}
std::string key = std::string(*v8::String::AsciiValue(args[0]->ToString()));
cv::Mat m = self->rec->getMat(key);
Local<Object> im = Matrix::constructor->GetFunction()->NewInstance();
Matrix *img = ObjectWrap::Unwrap<Matrix>(im);
img->mat = m;
return im;
}
#endif // End version > 2.4