mirror of
https://github.com/josdejong/mathjs.git
synced 2025-12-08 19:46:04 +00:00
387 lines
10 KiB
JavaScript
387 lines
10 KiB
JavaScript
'use strict';
|
|
|
|
var clone = require('../../util/object').clone;
|
|
var DimensionError = require('../../error/DimensionError');
|
|
|
|
function factory (type, config, load, typed) {
|
|
|
|
var collection = load(require('../../type/collection'));
|
|
var matrix = load(require('../construction/matrix'));
|
|
var equal = load(require('../relational/equal'));
|
|
var sparseScatter = load(require('./sparseScatter'));
|
|
var addScalar = load(require('./addScalar'));
|
|
var multiplyScalar = load(require('./multiplyScalar'));
|
|
|
|
var DenseMatrix = type.DenseMatrix,
|
|
SparseMatrix = type.SparseMatrix;
|
|
|
|
/**
|
|
* Add two values, `x + y`.
|
|
* For matrices, the function is evaluated element wise.
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.add(x, y)
|
|
*
|
|
* Examples:
|
|
*
|
|
* math.add(2, 3); // returns Number 5
|
|
*
|
|
* var a = math.complex(2, 3);
|
|
* var b = math.complex(-4, 1);
|
|
* math.add(a, b); // returns Complex -2 + 4i
|
|
*
|
|
* math.add([1, 2, 3], 4); // returns Array [5, 6, 7]
|
|
*
|
|
* var c = math.unit('5 cm');
|
|
* var d = math.unit('2.1 mm');
|
|
* math.add(c, d); // returns Unit 52.1 mm
|
|
*
|
|
* See also:
|
|
*
|
|
* subtract
|
|
*
|
|
* @param {Number | BigNumber | Boolean | Complex | Unit | String | Array | Matrix | null} x First value to add
|
|
* @param {Number | BigNumber | Boolean | Complex | Unit | String | Array | Matrix | null} y Second value to add
|
|
* @return {Number | BigNumber | Complex | Unit | String | Array | Matrix} Sum of `x` and `y`
|
|
*/
|
|
var add = typed('add', {
|
|
|
|
'any, any': addScalar,
|
|
|
|
'Matrix, Matrix': function (x, y) {
|
|
// matrix sizes
|
|
var xsize = x.size();
|
|
var ysize = y.size();
|
|
|
|
// check dimensions
|
|
if (xsize.length !== ysize.length)
|
|
throw new DimensionError(xsize.length, ysize.length);
|
|
|
|
// result
|
|
var c;
|
|
|
|
// process matrix storage
|
|
switch (x.storage()) {
|
|
case 'sparse':
|
|
switch (y.storage()) {
|
|
case 'sparse':
|
|
// sparse + sparse
|
|
c = _addSparseMatrixSparseMatrix(x, y, xsize, ysize);
|
|
break;
|
|
default:
|
|
c = _addSparseMatrixMatrix(x, y.valueOf(), xsize, ysize);
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
switch (y.storage()) {
|
|
case 'sparse':
|
|
// sparse + sparse
|
|
c = _addMatrixSparseMatrix(x.valueOf(), y, xsize, ysize);
|
|
break;
|
|
default:
|
|
c = _addMatrixMatrix(x.valueOf(), y.valueOf(), x.storage());
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
return c;
|
|
},
|
|
|
|
'Array, Array': function (x, y) {
|
|
// use matrix implementation
|
|
return add(matrix(x), matrix(y)).valueOf();
|
|
},
|
|
|
|
'Array, Matrix': function (x, y) {
|
|
// use matrix implementation
|
|
return add(matrix(x), y);
|
|
},
|
|
|
|
'Matrix, Array': function (x, y) {
|
|
// use matrix implementation
|
|
return add(x, matrix(y));
|
|
},
|
|
|
|
'Matrix, any': function (x, y) {
|
|
// result
|
|
var c;
|
|
// check storage format
|
|
switch (x.storage()) {
|
|
case 'sparse':
|
|
c = _addSparseMatrixScalar(x, y, x.size());
|
|
break;
|
|
default:
|
|
c = collection.deepMap2(x, y, add);
|
|
break;
|
|
}
|
|
return c;
|
|
},
|
|
|
|
'any, Matrix': function (x, y) {
|
|
// result
|
|
var c;
|
|
// check storage format
|
|
switch (y.storage()) {
|
|
case 'sparse':
|
|
c = _addSparseMatrixScalar(y, x, y.size());
|
|
break;
|
|
default:
|
|
c = collection.deepMap2(x, y, add);
|
|
break;
|
|
}
|
|
return c;
|
|
},
|
|
|
|
'Array, any': function (x, y) {
|
|
return collection.deepMap2(x, y, add);
|
|
},
|
|
|
|
'any, Array': function (x, y) {
|
|
return collection.deepMap2(x, y, add);
|
|
}
|
|
});
|
|
|
|
/**
|
|
* C = A + B
|
|
*
|
|
* @param {Matrix} a SparseMatrix (MxN)
|
|
* @param {Scalar} b Scalar value
|
|
*
|
|
* @return {Matrix} SparseMatrix (MxN)
|
|
*/
|
|
var _addSparseMatrixScalar = function (a, b, asize) {
|
|
// rows and columns
|
|
var m = asize[0];
|
|
var n = asize[1];
|
|
// a arrays
|
|
var avalues = a._values;
|
|
var aindex = a._index;
|
|
var aptr = a._ptr;
|
|
// check b is zero
|
|
if (!equal(b, 0)) {
|
|
// c arrays
|
|
var cvalues = [];
|
|
var cindex = [];
|
|
var cptr = new Array(n);
|
|
// c matrix
|
|
var c = new SparseMatrix({
|
|
values: cvalues,
|
|
index: cindex,
|
|
ptr: cptr,
|
|
size: [m, n]
|
|
});
|
|
// loop columns
|
|
for (var j = 0; j < n; j++) {
|
|
// ptr for column j
|
|
cptr[j] = cindex.length;
|
|
// loop values for column j
|
|
for (var k0 = aptr[j], k1 = aptr[j + 1], k = k0; k < k1; k++) {
|
|
// sum values
|
|
var v = addScalar(avalues[k], b);
|
|
// compare with zero
|
|
if (!equal(v, 0)) {
|
|
// push to c
|
|
cindex.push(aindex[k]);
|
|
cvalues.push(v);
|
|
}
|
|
}
|
|
}
|
|
// update ptr
|
|
cptr[n] = cindex.length;
|
|
// return matrix
|
|
return c;
|
|
}
|
|
// return clone
|
|
return a.clone();
|
|
};
|
|
|
|
/**
|
|
* C = A + B
|
|
*
|
|
* @param {Matrix} a SparseMatrix (MxN)
|
|
* @param {Matrix} b SparseMatrix (MxN)
|
|
*
|
|
* @return {Matrix} SparseMatrix (MxN)
|
|
*/
|
|
var _addSparseMatrixSparseMatrix = function (a, b, asize, bsize) {
|
|
// check dimensions
|
|
if (asize[0] !== bsize[0] || asize[1] !== bsize[1])
|
|
throw new RangeError('Dimension mismatch in add. Matrix A (' + asize + ') must match Matrix B (' + bsize + ')');
|
|
// rows and columns
|
|
var m = asize[0];
|
|
var n = asize[1];
|
|
// a arrays
|
|
var avalues = a._values;
|
|
var adt = a._datatype;
|
|
// b arrays
|
|
var bvalues = b._values;
|
|
var bdt = b._datatype;
|
|
// process data types
|
|
var dt = adt && bdt && adt === bdt ? adt : undefined;
|
|
// multiply scalar implementation
|
|
var mf = dt ? multiplyScalar.signatures[dt + ',' + dt] : multiplyScalar;
|
|
var af = dt ? addScalar.signatures[dt + ',' + dt] : addScalar;
|
|
// flag indicating both matrices (a & b) contain data
|
|
var values = avalues && bvalues;
|
|
// c arrays
|
|
var cvalues = values ? [] : undefined;
|
|
var cindex = [];
|
|
var cptr = new Array(n);
|
|
// c matrix
|
|
var c = new SparseMatrix({
|
|
values: cvalues,
|
|
index: cindex,
|
|
ptr: cptr,
|
|
size: [m, n]
|
|
});
|
|
// column vector (store matrix values)
|
|
var x = values ? new Array(m) : undefined;
|
|
// column vector to signal row values in column j
|
|
var w = new Array(m);
|
|
// loop columns
|
|
for (var j = 0; j < n; j++) {
|
|
// init ptr for j
|
|
cptr[j] = cindex.length;
|
|
// process column j of a and write it to x
|
|
sparseScatter(a, j, 1, w, x, j + 1, c, mf, af);
|
|
// process column j of b and write it to x
|
|
sparseScatter(b, j, 1, w, x, j + 1, c, mf, af);
|
|
// check matrix contains values (pattern matrix)
|
|
if (values) {
|
|
// loop column values in C
|
|
for (var p0 = cptr[j], p1 = cindex.length, p = p0; p < p1; p++) {
|
|
// copy x[i] to c[i, j]
|
|
cvalues.push(x[cindex[p]]);
|
|
}
|
|
}
|
|
}
|
|
// finish cptr
|
|
cptr[n] = cindex.length;
|
|
// return matrix
|
|
return c;
|
|
};
|
|
|
|
/**
|
|
* C = A + B
|
|
*
|
|
* @param {Matrix} a SparseMatrix (MxN)
|
|
* @param {Matrix} b DenseMatrix (MxN)
|
|
*
|
|
* @return {Matrix} SparseMatrix (MxN)
|
|
*/
|
|
var _addSparseMatrixMatrix = function (a, b, asize, bsize) {
|
|
// check dimensions
|
|
if (asize[0] !== bsize[0] || asize[1] !== bsize[1])
|
|
throw new RangeError('Dimension mismatch in add. Matrix A (' + asize + ') must match Matrix B (' + bsize + ')');
|
|
// rows and columns
|
|
var m = asize[0];
|
|
var n = asize[1];
|
|
// b array
|
|
var data = b;
|
|
// c arrays
|
|
var cvalues = [];
|
|
var cindex = [];
|
|
var cptr = new Array(n);
|
|
// c matrix
|
|
var c = new SparseMatrix({
|
|
values: cvalues,
|
|
index: cindex,
|
|
ptr: cptr,
|
|
size: [m, n]
|
|
});
|
|
// column vector (store matrix values)
|
|
var x = new Array(m);
|
|
// column vector to signal row values in column j
|
|
var w = new Array(m);
|
|
// loop columns
|
|
for (var j = 0; j < n; j++) {
|
|
// init ptr for j
|
|
cptr[j] = cindex.length;
|
|
// copy matrix b column to x
|
|
for (var i = 0; i < m; i++) {
|
|
// value
|
|
var v = data[i][j];
|
|
// check for zero
|
|
if (!equal(v, 0)) {
|
|
x[i] = v;
|
|
w[i] = j + 1;
|
|
cindex.push(i);
|
|
}
|
|
}
|
|
// process column j of a and write it to x
|
|
sparseScatter(a, j, 1, w, x, j + 1, c, multiplyScalar, addScalar);
|
|
// loop column values in C
|
|
for (var p0 = cptr[j], p1 = cindex.length, p = p0; p < p1; p++) {
|
|
// copy x[i] to c[i, j]
|
|
cvalues.push(x[cindex[p]]);
|
|
}
|
|
}
|
|
// finish cptr
|
|
cptr[n] = cindex.length;
|
|
// return matrix
|
|
return c;
|
|
};
|
|
|
|
/**
|
|
* C = A + B
|
|
*
|
|
* @param {Matrix} a DenseMatrix (MxN)
|
|
* @param {Matrix} b SparseMatrix (MxN)
|
|
*
|
|
* @return {Matrix} DenseMatrix (MxN)
|
|
*/
|
|
var _addMatrixSparseMatrix = function (a, b, asize, bsize) {
|
|
// check dimensions
|
|
if (asize[0] !== bsize[0] || asize[1] !== bsize[1])
|
|
throw new RangeError('Dimension mismatch in add. Matrix A (' + asize + ') must match Matrix B (' + bsize + ')');
|
|
// rows and columns
|
|
var m = asize[0];
|
|
var n = asize[1];
|
|
// a array
|
|
var data = a;
|
|
// b arrays
|
|
var bvalues = b._values;
|
|
var bindex = b._index;
|
|
var bptr = b._ptr;
|
|
// c arrays
|
|
var cdata = clone(data);
|
|
// c matrix
|
|
var c = new DenseMatrix({
|
|
data: cdata,
|
|
size: [m, n]
|
|
});
|
|
// loop columns
|
|
for (var j = 0; j < n; j++) {
|
|
// loop values for column j
|
|
for (var k0 = bptr[j], k1 = bptr[j + 1], k = k0; k < k1; k++) {
|
|
// row
|
|
var i = bindex[k];
|
|
// aggregate value
|
|
cdata[i][j] = addScalar(cdata[i][j], bvalues[k]);
|
|
}
|
|
}
|
|
// return matrix
|
|
return c;
|
|
};
|
|
|
|
/**
|
|
* C = A + B
|
|
*
|
|
* @param {Matrix} a DenseMatrix (MxN)
|
|
* @param {Matrix} b DenseMatrix (MxN)
|
|
*
|
|
* @return {Matrix} DenseMatrix (MxN)
|
|
*/
|
|
var _addMatrixMatrix = function (a, b, format) {
|
|
// TODO: find a better implementation
|
|
return matrix(collection.deepMap2(a, b, add), format);
|
|
};
|
|
|
|
return add;
|
|
}
|
|
|
|
exports.name = 'add';
|
|
exports.factory = factory;
|