Jos de Jong 6f00715754
Specify import require paths (continuation of #1941) (#1962)
* Add `.js` extension to source file imports

* Specify package `exports` in `package.json`

Specify package type as `commonjs` (It's good to be specific)

* Move all compiled scripts into `lib` directory

Remove ./number.js (You can use the compiled ones in `./lib/*`)

Tell node that the `esm` directory is type `module` and enable tree shaking.

Remove unused files from packages `files` property

* Allow importing of package.json

* Make library ESM first

* - Fix merge conflicts
- Refactor `bundleAny` into `defaultInstance.js` and `browserBundle.cjs`
- Refactor unit tests to be able to run with plain nodejs (no transpiling)
- Fix browser examples

* Fix browser and browserstack tests

* Fix running unit tests on Node 10 (which has no support for modules)

* Fix node.js examples (those are still commonjs)

* Remove the need for `browserBundle.cjs`

* Generate minified bundle only

* [Security] Bump node-fetch from 2.6.0 to 2.6.1 (#1963)

Bumps [node-fetch](https://github.com/bitinn/node-fetch) from 2.6.0 to 2.6.1. **This update includes a security fix.**
- [Release notes](https://github.com/bitinn/node-fetch/releases)
- [Changelog](https://github.com/node-fetch/node-fetch/blob/master/docs/CHANGELOG.md)
- [Commits](https://github.com/bitinn/node-fetch/compare/v2.6.0...v2.6.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>

Co-authored-by: dependabot-preview[bot] <27856297+dependabot-preview[bot]@users.noreply.github.com>

* Cleanup console.log

* Add integration tests to test the entry points (commonjs/esm, full/number only)

* Create backward compatibility error messages in the files moved/removed since v8

* Describe breaking changes in HISTORY.md

* Bump karma from 5.2.1 to 5.2.2 (#1965)

Bumps [karma](https://github.com/karma-runner/karma) from 5.2.1 to 5.2.2.
- [Release notes](https://github.com/karma-runner/karma/releases)
- [Changelog](https://github.com/karma-runner/karma/blob/master/CHANGELOG.md)
- [Commits](https://github.com/karma-runner/karma/compare/v5.2.1...v5.2.2)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>

Co-authored-by: dependabot-preview[bot] <27856297+dependabot-preview[bot]@users.noreply.github.com>

Co-authored-by: Lee Langley-Rees <lee@greenimp.co.uk>
Co-authored-by: dependabot-preview[bot] <27856297+dependabot-preview[bot]@users.noreply.github.com>
2020-09-20 18:01:29 +02:00

106 lines
3.1 KiB
JavaScript

import assert from 'assert'
import approx from '../../../../../tools/approx.js'
import math from '../../../../../src/defaultInstance.js'
import { csPermute } from '../../../../../src/function/algebra/sparse/csPermute.js'
import { createCsLu } from '../../../../../src/function/algebra/sparse/csLu.js'
import { createCsSqr } from '../../../../../src/function/algebra/sparse/csSqr.js'
const { abs, add, divideScalar, multiply, subtract, larger, largerEq, transpose, SparseMatrix } = math
const csLu = createCsLu({ abs, divideScalar, multiply, subtract, larger, largerEq, SparseMatrix })
const csSqr = createCsSqr({ add, multiply, transpose })
describe('csLu', function () {
it('should decompose matrix, 2 x 2, no symbolic ordering and analysis, partial pivoting', function () {
const m = math.sparse([[2, 1], [1, 4]])
// partial pivoting
const r = csLu(m, null, 1)
// L
assert.deepStrictEqual(r.L.valueOf(), [[1, 0], [0.5, 1]])
// U
assert.deepStrictEqual(r.U.valueOf(), [[2, 1], [0, 3.5]])
// P
assert.deepStrictEqual(r.pinv, [0, 1])
// verify
approx.deepEqual(csPermute(m, r.pinv, null, true), math.multiply(r.L, r.U))
})
it('should decompose matrix, 4 x 4, natural ordering (order=0), partial pivoting', function () {
const m = math.sparse(
[
[4.5, 0, 3.2, 0],
[3.1, 2.9, 0, 0.9],
[0, 1.7, 3, 0],
[3.5, 0.4, 0, 1]
])
// symbolic ordering and analysis, order = 0
const s = csSqr(0, m, false)
// partial pivoting
const r = csLu(m, s, 1)
// verify
approx.deepEqual(csPermute(m, r.pinv, s.q, true).valueOf(), math.multiply(r.L, r.U).valueOf())
})
it('should decompose matrix, 4 x 4, amd(A+A\') (order=1), partial pivoting', function () {
const m = math.sparse(
[
[4.5, 0, 3.2, 0],
[3.1, 2.9, 0, 0.9],
[0, 1.7, 3, 0],
[3.5, 0.4, 0, 1]
])
// symbolic ordering and analysis, order = 1
const s = csSqr(1, m, false)
// partial pivoting
const r = csLu(m, s, 1)
// verify
approx.deepEqual(csPermute(m, r.pinv, s.q, true).valueOf(), math.multiply(r.L, r.U).valueOf())
})
it('should decompose matrix, 4 x 4, amd(A\'*A) (order=2), partial pivoting', function () {
const m = math.sparse(
[
[4.5, 0, 3.2, 0],
[3.1, 2.9, 0, 0.9],
[0, 1.7, 3, 0],
[3.5, 0.4, 0, 1]
])
// symbolic ordering and analysis, order = 2
const s = csSqr(2, m, false)
// partial pivoting
const r = csLu(m, s, 1)
// verify
approx.deepEqual(csPermute(m, r.pinv, s.q, true).valueOf(), math.multiply(r.L, r.U).valueOf())
})
it('should decompose matrix, 4 x 4, amd(A\'*A) (order=3), partial pivoting', function () {
const m = math.sparse(
[
[4.5, 0, 3.2, 0],
[3.1, 2.9, 0, 0.9],
[0, 1.7, 3, 0],
[3.5, 0.4, 0, 1]
])
// symbolic ordering and analysis, order = 3
const s = csSqr(3, m, false)
// partial pivoting
const r = csLu(m, s, 1)
// verify
approx.deepEqual(csPermute(m, r.pinv, s.q, true).valueOf(), math.multiply(r.L, r.U).valueOf())
})
})