Jos de Jong 6f00715754
Specify import require paths (continuation of #1941) (#1962)
* Add `.js` extension to source file imports

* Specify package `exports` in `package.json`

Specify package type as `commonjs` (It's good to be specific)

* Move all compiled scripts into `lib` directory

Remove ./number.js (You can use the compiled ones in `./lib/*`)

Tell node that the `esm` directory is type `module` and enable tree shaking.

Remove unused files from packages `files` property

* Allow importing of package.json

* Make library ESM first

* - Fix merge conflicts
- Refactor `bundleAny` into `defaultInstance.js` and `browserBundle.cjs`
- Refactor unit tests to be able to run with plain nodejs (no transpiling)
- Fix browser examples

* Fix browser and browserstack tests

* Fix running unit tests on Node 10 (which has no support for modules)

* Fix node.js examples (those are still commonjs)

* Remove the need for `browserBundle.cjs`

* Generate minified bundle only

* [Security] Bump node-fetch from 2.6.0 to 2.6.1 (#1963)

Bumps [node-fetch](https://github.com/bitinn/node-fetch) from 2.6.0 to 2.6.1. **This update includes a security fix.**
- [Release notes](https://github.com/bitinn/node-fetch/releases)
- [Changelog](https://github.com/node-fetch/node-fetch/blob/master/docs/CHANGELOG.md)
- [Commits](https://github.com/bitinn/node-fetch/compare/v2.6.0...v2.6.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>

Co-authored-by: dependabot-preview[bot] <27856297+dependabot-preview[bot]@users.noreply.github.com>

* Cleanup console.log

* Add integration tests to test the entry points (commonjs/esm, full/number only)

* Create backward compatibility error messages in the files moved/removed since v8

* Describe breaking changes in HISTORY.md

* Bump karma from 5.2.1 to 5.2.2 (#1965)

Bumps [karma](https://github.com/karma-runner/karma) from 5.2.1 to 5.2.2.
- [Release notes](https://github.com/karma-runner/karma/releases)
- [Changelog](https://github.com/karma-runner/karma/blob/master/CHANGELOG.md)
- [Commits](https://github.com/karma-runner/karma/compare/v5.2.1...v5.2.2)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>

Co-authored-by: dependabot-preview[bot] <27856297+dependabot-preview[bot]@users.noreply.github.com>

Co-authored-by: Lee Langley-Rees <lee@greenimp.co.uk>
Co-authored-by: dependabot-preview[bot] <27856297+dependabot-preview[bot]@users.noreply.github.com>
2020-09-20 18:01:29 +02:00

387 lines
8.7 KiB
JavaScript

// test lup
import assert from 'assert'
import approx from '../../../../../tools/approx.js'
import math from '../../../../../src/defaultInstance.js'
describe('lup', function () {
it('should decompose matrix, n x n, no permutations, array', function () {
const m = [[2, 1], [1, 4]]
const r = math.lup(m)
// L
assert.deepStrictEqual(r.L.valueOf(), [[1, 0], [0.5, 1]])
// U
assert.deepStrictEqual(r.U.valueOf(), [[2, 1], [0, 3.5]])
// P
assert.deepStrictEqual(r.p, [0, 1])
// verify
approx.deepEqual(math.multiply(_p(r.p), m).valueOf(), math.multiply(r.L, r.U).valueOf())
})
it('should decompose matrix, n x n, no permutations, sparse', function () {
const m = math.matrix([[2, 1], [1, 4]], 'sparse')
const r = math.lup(m)
// L
assert.deepStrictEqual(r.L.valueOf(), [[1, 0], [0.5, 1]])
// U
assert.deepStrictEqual(r.U.valueOf(), [[2, 1], [0, 3.5]])
// P
assert.deepStrictEqual(r.p, [0, 1])
// verify
approx.deepEqual(math.multiply(_p(r.p), m).valueOf(), math.multiply(r.L, r.U).valueOf())
})
it('should decompose matrix, n x n, no permutations, dense format', function () {
const m = math.matrix([[2, 1], [1, 4]], 'dense')
const r = math.lup(m)
// L
assert.deepStrictEqual(r.L.valueOf(), [[1, 0], [0.5, 1]])
// U
assert.deepStrictEqual(r.U.valueOf(), [[2, 1], [0, 3.5]])
// P
assert.deepStrictEqual(r.p, [0, 1])
// verify
approx.deepEqual(math.multiply(_p(r.p), m).valueOf(), math.multiply(r.L, r.U).valueOf())
})
it('should decompose matrix, m x n, m < n, no permutations, dense format', function () {
const m = math.matrix(
[
[2, 1, 1],
[1, 4, 5]
]
)
const r = math.lup(m)
// L
assert.deepStrictEqual(
r.L,
math.matrix(
[
[1, 0],
[0.5, 1]
]
))
// U
assert.deepStrictEqual(
r.U,
math.matrix(
[
[2, 1, 1],
[0, 3.5, 4.5]
]
))
// P
assert.deepStrictEqual(r.p, [0, 1])
// verify
approx.deepEqual(math.multiply(_p(r.p), m).valueOf(), math.multiply(r.L, r.U).valueOf())
})
it('should decompose matrix, m x n, m > n, no permutations, dense format', function () {
const m = math.matrix(
[
[8, 2],
[6, 4],
[4, 1]
]
)
const r = math.lup(m)
// L
assert.deepStrictEqual(
r.L,
math.matrix(
[
[1, 0],
[0.75, 1],
[0.5, 0]
]
))
// U
assert.deepStrictEqual(
r.U,
math.matrix(
[
[8, 2],
[0, 2.5]
]
))
// P
assert.deepStrictEqual(r.p, [0, 1, 2])
// verify
approx.deepEqual(math.multiply(_p(r.p), m).valueOf(), math.multiply(r.L, r.U).valueOf())
})
it('should decompose matrix, n x n, dense format', function () {
const m = math.matrix(
[
[16, -120, 240, -140],
[-120, 1200, -2700, 1680],
[240, -2700, 6480, -4200],
[-140, 1680, -4200, 2800]
]
)
const r = math.lup(m)
// L
approx.deepEqual(
r.L.valueOf(),
[
[1, 0, 0, 0],
[-0.5, 1, 0, 0],
[-0.5833333333333334, -0.7, 1, 0],
[0.06666666666666667, -0.4, -0.5714285714285776, 1]
])
// U
approx.deepEqual(
r.U.valueOf(),
[
[240, -2700, 6480, -4200],
[0, -150, 540, -420],
[0, 0, -42, 56],
[0, 0, 0, 4]
])
// P
assert.deepStrictEqual(r.p, [3, 1, 0, 2])
// verify
approx.deepEqual(math.multiply(_p(r.p), m).valueOf(), math.multiply(r.L, r.U).valueOf())
})
it('should decompose matrix, 3 x 3, zero pivote value, dense format', function () {
const m = math.matrix(
[
[1, 2, 3],
[2, 4, 6],
[4, 8, 9]
])
const r = math.lup(m)
// L
approx.deepEqual(
r.L.valueOf(),
[
[1, 0, 0],
[0.5, 1, 0],
[0.25, 0, 1.0]
])
// U
approx.deepEqual(
r.U.valueOf(),
[
[4, 8, 9],
[0, 0, 1.5],
[0, 0, 0.75]
])
// P
assert.deepStrictEqual(r.p, [2, 1, 0])
// verify
approx.deepEqual(math.multiply(_p(r.p), m).valueOf(), math.multiply(r.L, r.U).valueOf())
})
it('should decompose matrix, 3 x 2, complex numbers, dense format', function () {
const m = math.matrix(
[
[math.complex(0, 3), 10],
[math.complex(0, 1), 1],
[math.complex(0, 1), 1]
])
const r = math.lup(m)
// L
approx.deepEqual(
r.L.valueOf(),
[
[1, 0],
[math.complex(0.3333333, 0), 1],
[math.complex(0.3333333, 0), 1]
])
// U
approx.deepEqual(
r.U.valueOf(),
[
[math.complex(0, 3), 10],
[0, math.complex(-2.3333333333, 0)]
])
// P
assert.deepStrictEqual(r.p, [0, 1, 2])
// verify
approx.deepEqual(math.multiply(_p(r.p), m).valueOf(), math.multiply(r.L, r.U).valueOf())
})
it('should decompose matrix, m x n, m < n, no permutations, sparse', function () {
const m = math.matrix(
[
[2, 1, 1],
[1, 4, 5]
],
'sparse')
const r = math.lup(m)
// L
assert.deepStrictEqual(
r.L.valueOf(),
[
[1, 0],
[0.5, 1]
])
// U
assert.deepStrictEqual(
r.U.valueOf(),
[
[2, 1, 1],
[0, 3.5, 4.5]
])
// P
assert.deepStrictEqual(r.p, [0, 1])
// verify
approx.deepEqual(math.multiply(_p(r.p), m).valueOf(), math.multiply(r.L, r.U).valueOf())
})
it('should decompose matrix, m x n, m > n, no permutations, sparse', function () {
const m = math.matrix(
[
[8, 2],
[6, 4],
[4, 1]
],
'sparse')
const r = math.lup(m)
// L
assert.deepStrictEqual(
r.L.valueOf(),
[
[1, 0],
[0.75, 1],
[0.5, 0]
])
// U
assert.deepStrictEqual(
r.U.valueOf(),
[
[8, 2],
[0, 2.5]
])
// P
assert.deepStrictEqual(r.p, [0, 1, 2])
// verify
approx.deepEqual(math.multiply(_p(r.p), m).valueOf(), math.multiply(r.L, r.U).valueOf())
})
it('should decompose matrix, n x n, sparse', function () {
const m = math.matrix(
[
[16, -120, 240, -140],
[-120, 1200, -2700, 1680],
[240, -2700, 6480, -4200],
[-140, 1680, -4200, 2800]
],
'sparse')
const r = math.lup(m)
// L
approx.deepEqual(
r.L.valueOf(),
[
[1, 0, 0, 0],
[-0.5, 1, 0, 0],
[-0.5833333333333334, -0.7, 1, 0],
[0.06666666666666667, -0.4, -0.5714285714285776, 1]
])
// U
approx.deepEqual(
r.U.valueOf(),
[
[240, -2700, 6480, -4200],
[0, -150, 540, -420],
[0, 0, -42, 56],
[0, 0, 0, 4]
])
// P
assert.deepStrictEqual(r.p, [3, 1, 0, 2])
// verify
approx.deepEqual(math.multiply(_p(r.p), m).valueOf(), math.multiply(r.L, r.U).valueOf())
})
it('should decompose matrix, 3 x 3, zero pivote value, sparse', function () {
const m = math.matrix(
[
[1, 2, 3],
[2, 4, 6],
[4, 8, 9]
],
'sparse')
const r = math.lup(m)
// L
approx.deepEqual(
r.L.valueOf(),
[
[1, 0, 0],
[0.5, 1, 0],
[0.25, 0, 1.0]
])
// U
approx.deepEqual(
r.U.valueOf(),
[
[4, 8, 9],
[0, 0, 1.5],
[0, 0, 0.75]
])
// P
assert.deepStrictEqual(r.p, [2, 1, 0])
// verify
approx.deepEqual(math.multiply(_p(r.p), m).valueOf(), math.multiply(r.L, r.U).valueOf())
})
it('should decompose matrix, 3 x 2, complex numbers, sparse', function () {
const m = math.matrix(
[
[math.complex(0, 3), 10],
[math.complex(0, 1), 1],
[math.complex(0, 1), 1]
], 'sparse')
const r = math.lup(m)
// L
approx.deepEqual(
r.L.valueOf(),
[
[1, 0],
[math.complex(0.3333333, 0), 1],
[math.complex(0.3333333, 0), 1]
])
// U
approx.deepEqual(
r.U.valueOf(),
[
[math.complex(0, 3), 10],
[0, math.complex(-2.3333333333, 0)]
])
// P
assert.deepStrictEqual(r.p, [0, 1, 2])
// verify
approx.deepEqual(math.multiply(_p(r.p), m).valueOf(), math.multiply(r.L, r.U).valueOf())
})
/**
* Creates a Matrix out of a row permutation vector
*/
function _p (p) {
// identity matrix
const identity = math.identity(p.length)
// array
const data = []
// loop rows
for (let i = 0, l = p.length; i < l; i++) {
// swap row
data[p[i]] = identity._data[i]
}
return data
}
})