86 lines
2.3 KiB
JavaScript

'use strict';
module.exports = function (math) {
var util = require('../../util/index'),
BigNumber = math.type.BigNumber,
Complex = require('../../type/Complex'),
Unit = require('../../type/Unit'),
collection = require('../../type/collection'),
number = util.number,
isNumber = util.number.isNumber,
isBoolean = util['boolean'].isBoolean,
isComplex = Complex.isComplex,
isUnit = Unit.isUnit,
isCollection = collection.isCollection;
/**
* Calculate the hyperbolic cosecant of a value,
* defined as `csch(x) = 1 / sinh(x)`.
*
* For matrices, the function is evaluated element wise.
*
* Syntax:
*
* math.csch(x)
*
* Examples:
*
* // csch(x) = 1/ sinh(x)
* math.csch(0.5); // returns 1.9190347513349437
* 1 / math.sinh(0.5); // returns 1.9190347513349437
*
* See also:
*
* sinh, sech, coth
*
* @param {Number | Boolean | Complex | Unit | Array | Matrix | null} x Function input
* @return {Number | Complex | Array | Matrix} Hyperbolic cosecant of x
*/
math.csch = function csch(x) {
if (arguments.length != 1) {
throw new math.error.ArgumentsError('csch', arguments.length, 1);
}
if (isNumber(x)) {
// x == 0
if (x == 0) return Number.NaN;
// consider values close to zero (+/-)
return Math.abs(2 / (Math.exp(x) - Math.exp(-x))) * number.sign(x);
}
if (isComplex(x)) {
var ep = Math.exp(x.re);
var en = Math.exp(-x.re);
var re = Math.cos(x.im) * (ep - en);
var im = Math.sin(x.im) * (ep + en);
var den = re * re + im * im;
return new Complex(2 * re / den, -2 * im /den);
}
if (isUnit(x)) {
if (!x.hasBase(Unit.BASE_UNITS.ANGLE)) {
throw new TypeError ('Unit in function csch is no angle');
}
return csch(x.value);
}
if (isCollection(x)) {
return collection.deepMap(x, csch);
}
if (isBoolean(x) || x === null) {
return csch(x ? 1 : 0);
}
if (x instanceof BigNumber) {
// TODO: implement BigNumber support
// downgrade to Number
return csch(x.toNumber());
}
throw new math.error.UnsupportedTypeError('csch', math['typeof'](x));
};
};