85 lines
2.2 KiB
JavaScript

'use strict';
module.exports = function (math) {
var util = require('../../util/index'),
BigNumber = math.type.BigNumber,
Complex = require('../../type/Complex'),
Unit = require('../../type/Unit'),
collection = require('../../type/collection'),
isNumber = util.number.isNumber,
isBoolean = util['boolean'].isBoolean,
isComplex = Complex.isComplex,
isUnit = Unit.isUnit,
isCollection = collection.isCollection;
/**
* Calculate the hyperbolic cotangent of a value,
* defined as `coth(x) = 1 / tanh(x)`.
*
* For matrices, the function is evaluated element wise.
*
* Syntax:
*
* math.coth(x)
*
* Examples:
*
* // coth(x) = 1 / tanh(x)
* math.coth(2); // returns 1.0373147207275482
* 1 / math.tanh(2); // returns 1.0373147207275482
*
* See also:
*
* sinh, tanh, cosh
*
* @param {Number | Boolean | Complex | Unit | Array | Matrix | null} x Function input
* @return {Number | Complex | Array | Matrix} Hyperbolic cotangent of x
*/
math.coth = function coth(x) {
if (arguments.length != 1) {
throw new math.error.ArgumentsError('coth', arguments.length, 1);
}
if (isNumber(x)) {
var e = Math.exp(2 * x);
return (e + 1) / (e - 1);
}
if (isComplex(x)) {
var r = Math.exp(2 * x.re);
var re = r * Math.cos(2 * x.im);
var im = r * Math.sin(2 * x.im);
var den = (re - 1) * (re - 1) + im * im;
return new Complex(
((re + 1) * (re - 1) + im * im) / den,
-2 * im / den
);
}
if (isUnit(x)) {
if (!x.hasBase(Unit.BASE_UNITS.ANGLE)) {
throw new TypeError ('Unit in function coth is no angle');
}
return coth(x.value);
}
if (isCollection(x)) {
return collection.deepMap(x, coth);
}
if (isBoolean(x) || x === null) {
return coth(x ? 1 : 0);
}
if (x instanceof BigNumber) {
// TODO: implement BigNumber support
// downgrade to Number
return coth(x.toNumber());
}
throw new math.error.UnsupportedTypeError('coth', math['typeof'](x));
};
};