78 lines
1.9 KiB
JavaScript

'use strict';
module.exports = function (math) {
var util = require('../../util/index'),
BigNumber = math.type.BigNumber,
Complex = require('../../type/Complex'),
Unit = require('../../type/Unit'),
collection = require('../../type/collection'),
isNumber = util.number.isNumber,
isBoolean = util['boolean'].isBoolean,
isComplex = Complex.isComplex,
isUnit = Unit.isUnit,
isCollection = collection.isCollection,
bigAsinh = util.bignumber.acosh_asinh_asech_acsch;
/**
* Calculate the hyperbolic arcsine of a value,
* defined as `asinh(x) = ln(x + sqrt(x^2 + 1))`.
*
* For matrices, the function is evaluated element wise.
*
* Syntax:
*
* math.asinh(x)
*
* Examples:
*
* math.asinh(0.5); // returns 0.4812118250596
*
* See also:
*
* acosh, atanh
*
* @param {Number | Boolean | Complex | Unit | Array | Matrix | null} x Function input
* @return {Number | Complex | Array | Matrix} Hyperbolic arcsine of x
*/
math.asinh = function asinh(x) {
if (arguments.length != 1) {
throw new math.error.ArgumentsError('asinh', arguments.length, 1);
}
if (isNumber(x)) {
return Math.log(x + Math.sqrt(x*x + 1));
}
if (isComplex(x)) {
return new Complex(
Math.log(x.re + Math.sqrt(x.re*x.re + 1)),
Math.log(x.im + Math.sqrt(x.im*x.im + 1))
);
}
if (isUnit(x)) {
if (!x.hasBase(Unit.BASE_UNITS.ANGLE)) {
throw new TypeError('Unit in function asinh is no angle');
}
return asinh(x.value);
}
if (isCollection(x)) {
return collection.deepMap(x, asinh);
}
if (isBoolean(x) || x === null) {
return (x) ? Math.log(1 + Math.SQRT2) : 0;
}
if (x instanceof BigNumber) {
return bigAsinh(x, 1, false);
}
throw new math.error.UnsupportedTypeError('asinh', math['typeof'](x));
};
};