78 lines
1.9 KiB
JavaScript

'use strict';
module.exports = function (math) {
var util = require('../../util/index'),
BigNumber = math.type.BigNumber,
Complex = require('../../type/Complex'),
Unit = require('../../type/Unit'),
collection = require('../../type/collection'),
isNumber = util.number.isNumber,
isBoolean = util['boolean'].isBoolean,
isComplex = Complex.isComplex,
isUnit = Unit.isUnit,
isCollection = collection.isCollection,
bigAcoth = util.bignumber.atanh_acoth;
/**
* Calculate the hyperbolic arccotangent of a value,
* defined as `acoth(x) = 2 / ln((1 + x)/(1 - x))`.
*
* For matrices, the function is evaluated element wise.
*
* Syntax:
*
* math.acoth(x)
*
* Examples:
*
* math.acoth(0.5); // returns 0.4812118250596
*
* See also:
*
* acsch, asech
*
* @param {Number | Boolean | Complex | Unit | Array | Matrix | null} x Function input
* @return {Number | Complex | Array | Matrix} Hyperbolic arccotangent of x
*/
math.acoth = function acoth(x) {
if (arguments.length != 1) {
throw new math.error.ArgumentsError('acoth', arguments.length, 1);
}
if (isNumber(x)) {
return 2 / Math.log((1 + x)/(1 - x));
}
if (isComplex(x)) {
return new Complex(
2 / Math.log((1 + x.re)/(1 - x.re)),
2 / (Math.log(1 + x.im) - Math.log(1 - x.im))
);
}
if (isUnit(x)) {
if (!x.hasBase(Unit.BASE_UNITS.ANGLE)) {
throw new TypeError('Unit in function acoth is no angle');
}
return acoth(x.value);
}
if (isCollection(x)) {
return collection.deepMap(x, acoth);
}
if (isBoolean(x) || x === null) {
return (x) ? Infinity : 0;
}
if (x instanceof BigNumber) {
return bigAcoth(x, true);
}
throw new math.error.UnsupportedTypeError('acoth', math['typeof'](x));
};
};