mirror of
https://github.com/josdejong/mathjs.git
synced 2026-01-18 14:59:29 +00:00
62 lines
1.9 KiB
JavaScript
62 lines
1.9 KiB
JavaScript
'use strict';
|
|
|
|
function factory (type, config, load) {
|
|
|
|
var cs_dfs = load(require('./cs_dfs'));
|
|
var cs_marked = load(require('./cs_marked'));
|
|
var cs_mark = load(require('./cs_mark'));
|
|
|
|
/**
|
|
* The cs_reach function computes X = Reach(B), where B is the nonzero pattern of the n-by-1
|
|
* sparse column of vector b. The function returns the set of nodes reachable from any node in B. The
|
|
* nonzero pattern xi of the solution x to the sparse linear system Lx=b is given by X=Reach(B).
|
|
*
|
|
* @param {Matrix} g The G matrix
|
|
* @param {Matrix} b The B matrix
|
|
* @param {Number} k The kth column in B
|
|
* @param {Array} xi The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
|
|
* The first n entries is the nonzero pattern, the last n entries is the stack
|
|
* @param {Array} pinv The inverse row permutation vector
|
|
*
|
|
* @return {Number} The index for the nonzero pattern
|
|
*
|
|
* Reference: http://faculty.cse.tamu.edu/davis/publications.html
|
|
*/
|
|
var cs_reach = function (g, b, k, xi, pinv) {
|
|
// g arrays
|
|
var gptr = g._ptr;
|
|
var gsize = g._size;
|
|
// b arrays
|
|
var bindex = b._index;
|
|
var bptr = b._ptr;
|
|
// columns
|
|
var n = gsize[1];
|
|
// vars
|
|
var p, p0, p1;
|
|
// initialize top
|
|
var top = n;
|
|
// loop column indeces in B
|
|
for (p0 = bptr[k], p1 = bptr[k + 1], p = p0; p < p1; p++) {
|
|
// node i
|
|
var i = bindex[p];
|
|
// check node i is marked
|
|
if (!cs_marked(gptr, i)) {
|
|
// start a dfs at unmarked node i
|
|
top = cs_dfs(i, g, top, xi, pinv);
|
|
}
|
|
}
|
|
// loop columns from top -> n - 1
|
|
for (p = top; p < n; p++) {
|
|
// restore G
|
|
cs_mark(gptr, xi[p]);
|
|
}
|
|
return top;
|
|
};
|
|
|
|
return cs_reach;
|
|
}
|
|
|
|
exports.name = 'cs_reach';
|
|
exports.path = 'sparse';
|
|
exports.factory = factory;
|