116 lines
2.6 KiB
JavaScript

module.exports = function (math) {
var util = require('../../util/index'),
BigNumber = require('bignumber.js'),
collection = require('../../type/collection'),
isNumber = util.number.isNumber,
toNumber = util.number.toNumber,
toBigNumber = util.number.toBigNumber,
isBoolean = util['boolean'].isBoolean,
isCollection = collection.isCollection;
/**
* Calculates the modulus, the remainder of an integer division.
*
* x % y
* mod(x, y)
*
* For matrices, the function is evaluated element wise.
*
* @param {Number | BigNumber | Boolean | Array | Matrix} x
* @param {Number | BigNumber | Boolean | Array | Matrix} y
* @return {Number | BigNumber | Array | Matrix} res
*/
math.mod = function mod(x, y) {
if (arguments.length != 2) {
throw new math.error.ArgumentsError('mod', arguments.length, 2);
}
// see http://functions.wolfram.com/IntegerFunctions/Mod/
if (isNumber(x)) {
if (isNumber(y)) {
// number % number
return _mod(x, y);
}
}
if (x instanceof BigNumber) {
// try to convert to big number
if (isNumber(y)) {
y = toBigNumber(y);
}
else if (isBoolean(y)) {
y = new BigNumber(y ? 1 : 0);
}
if (y instanceof BigNumber) {
return x.mod(y);
}
// downgrade to Number
return mod(toNumber(x), y);
}
if (y instanceof BigNumber) {
// try to convert to big number
if (isNumber(x)) {
x = toBigNumber(x);
}
else if (isBoolean(x)) {
x = new BigNumber(x ? 1 : 0);
}
if (x instanceof BigNumber) {
return x.mod(y)
}
// downgrade to Number
return mod(x, toNumber(y));
}
// TODO: implement mod for complex values
if (isCollection(x) || isCollection(y)) {
return collection.deepMap2(x, y, mod);
}
if (isBoolean(x)) {
return mod(+x, y);
}
if (isBoolean(y)) {
return mod(x, +y);
}
throw new math.error.UnsupportedTypeError('mod', x, y);
};
/**
* Calculate the modulus of two numbers
* @param {Number} x
* @param {Number} y
* @returns {number} res
* @private
*/
function _mod(x, y) {
if (y > 0) {
if (x > 0) {
return x % y;
}
else if (x == 0) {
return 0;
}
else { // x < 0
return x - y * Math.floor(x / y);
}
}
else if (y == 0) {
return x;
}
else { // y < 0
// TODO: implement mod for a negative divisor
throw new Error('Cannot calculate mod for a negative divisor');
}
}
};