mathjs/lib/function/algebra/solver/utils/solveValidation.js

162 lines
4.6 KiB
JavaScript

'use strict';
var util = require('../../../../utils/index');
var string = util.string;
var array = util.array;
var isArray = Array.isArray;
function factory (type) {
var DenseMatrix = type.DenseMatrix;
/**
* Validates matrix and column vector b for backward/forward substitution algorithms.
*
* @param {Matrix} m An N x N matrix
* @param {Array | Matrix} b A column vector
* @param {Boolean} copy Return a copy of vector b
*
* @return {DenseMatrix} Dense column vector b
*/
var solveValidation = function (m, b, copy) {
// matrix size
var size = m.size();
// validate matrix dimensions
if (size.length !== 2)
throw new RangeError('Matrix must be two dimensional (size: ' + string.format(size) + ')');
// rows & columns
var rows = size[0];
var columns = size[1];
// validate rows & columns
if (rows !== columns)
throw new RangeError('Matrix must be square (size: ' + string.format(size) + ')');
// vars
var data, i, bdata;
// check b is matrix
if (type.isMatrix(b)) {
// matrix size
var msize = b.size();
// vector
if (msize.length === 1) {
// check vector length
if (msize[0] !== rows)
throw new RangeError('Dimension mismatch. Matrix columns must match vector length.');
// create data array
data = [];
// matrix data (DenseMatrix)
bdata = b._data;
// loop b data
for (i = 0; i < rows; i++) {
// row array
data[i] = [bdata[i]];
}
// return Dense Matrix
return new DenseMatrix({
data: data,
size: [rows, 1],
datatype: b._datatype
});
}
// two dimensions
if (msize.length === 2) {
// array must be a column vector
if (msize[0] !== rows || msize[1] !== 1)
throw new RangeError('Dimension mismatch. Matrix columns must match vector length.');
// check matrix type
if (type.isDenseMatrix(b)) {
// check a copy is needed
if (copy) {
// create data array
data = [];
// matrix data (DenseMatrix)
bdata = b._data;
// loop b data
for (i = 0; i < rows; i++) {
// row array
data[i] = [bdata[i][0]];
}
// return Dense Matrix
return new DenseMatrix({
data: data,
size: [rows, 1],
datatype: b._datatype
});
}
// b is already a column vector
return b;
}
// create data array
data = [];
for (i = 0; i < rows; i++)
data[i] = [0];
// sparse matrix arrays
var values = b._values;
var index = b._index;
var ptr = b._ptr;
// loop values in column 0
for (var k1 = ptr[1], k = ptr[0]; k < k1; k++) {
// row
i = index[k];
// add to data
data[i][0] = values[k];
}
// return Dense Matrix
return new DenseMatrix({
data: data,
size: [rows, 1],
datatype: b._datatype
});
}
// throw error
throw new RangeError('Dimension mismatch. Matrix columns must match vector length.');
}
// check b is array
if (isArray(b)) {
// size
var asize = array.size(b);
// check matrix dimensions, vector
if (asize.length === 1) {
// check vector length
if (asize[0] !== rows)
throw new RangeError('Dimension mismatch. Matrix columns must match vector length.');
// create data array
data = [];
// loop b
for (i = 0; i < rows; i++) {
// row array
data[i] = [b[i]];
}
// return Dense Matrix
return new DenseMatrix({
data: data,
size: [rows, 1]
});
}
if (asize.length === 2) {
// array must be a column vector
if (asize[0] !== rows || asize[1] !== 1)
throw new RangeError('Dimension mismatch. Matrix columns must match vector length.');
// create data array
data = [];
// loop b data
for (i = 0; i < rows; i++) {
// row array
data[i] = [b[i][0]];
}
// return Dense Matrix
return new DenseMatrix({
data: data,
size: [rows, 1]
});
}
// throw error
throw new RangeError('Dimension mismatch. Matrix columns must match vector length.');
}
};
return solveValidation;
}
exports.factory = factory;