mirror of
https://github.com/josdejong/mathjs.git
synced 2025-12-08 19:46:04 +00:00
174 lines
4.8 KiB
JavaScript
174 lines
4.8 KiB
JavaScript
'use strict';
|
|
|
|
function factory (type, config, load, typed) {
|
|
|
|
var matrix = load(require('../../../type/matrix/function/matrix'));
|
|
var divideScalar = load(require('../../arithmetic/divideScalar'));
|
|
var multiply = load(require('../../arithmetic/multiply'));
|
|
var subtract = load(require('../../arithmetic/subtract'));
|
|
var equalScalar = load(require('../../relational/equalScalar'));
|
|
|
|
var substitutionValidation = load(require('./substitutionValidation'));
|
|
|
|
var SparseMatrix = type.SparseMatrix;
|
|
var DenseMatrix = type.DenseMatrix;
|
|
|
|
/**
|
|
* Solves the linear equation system by forwards substitution. Matrix must be a lower triangular matrix.
|
|
*
|
|
* L * x = b
|
|
*
|
|
* @param {Matrix, Array} A N x N matrix or array (L)
|
|
* @param {Matrix, Array} A column vector with the b values
|
|
*
|
|
* @return {Matrix} A column vector with the linear system solution (x)
|
|
*/
|
|
var lsolve = typed('lsolve', {
|
|
'Matrix, Array | Matrix': function (m, b) {
|
|
// process matrix storage format
|
|
switch (m.storage()) {
|
|
case 'dense':
|
|
return _denseForwardSubstitution(m, b);
|
|
case 'sparse':
|
|
return _sparseForwardSubstitution(m, b);
|
|
}
|
|
},
|
|
'Array, Array | Matrix': function (a, b) {
|
|
// create dense matrix from array
|
|
var m = matrix(a);
|
|
// use matrix implementation
|
|
var r = lsolve(m, b);
|
|
// result
|
|
return r.valueOf();
|
|
}
|
|
});
|
|
|
|
var _denseForwardSubstitution = function (m, b) {
|
|
// validate matrix and vector, return copy of column vector b
|
|
b = substitutionValidation(m, b);
|
|
// rows & columns
|
|
var rows = m._size[0];
|
|
var columns = m._size[1];
|
|
// result
|
|
var x = [];
|
|
// data
|
|
var data = m._data;
|
|
// forward solve m * x = b, loop columns
|
|
for (var j = 0; j < columns; j++) {
|
|
// b[j]
|
|
var bj = b[j] || 0;
|
|
// x[j]
|
|
var xj;
|
|
// forward substitution (outer product) avoids inner looping when bj == 0
|
|
if (!equalScalar(bj, 0)) {
|
|
// value @ [j, j]
|
|
var vjj = data[j][j];
|
|
// check vjj
|
|
if (equalScalar(vjj, 0)) {
|
|
// system cannot be solved
|
|
throw new Error('Linear system cannot be solved since matrix is singular');
|
|
}
|
|
// calculate xj
|
|
xj = divideScalar(bj, vjj);
|
|
// loop rows
|
|
for (var i = j + 1; i < rows; i++) {
|
|
// update copy of b
|
|
b[i] = subtract(b[i] || 0, multiply(xj, data[i][j]));
|
|
}
|
|
}
|
|
else {
|
|
// zero @ j
|
|
xj = 0;
|
|
}
|
|
// update x
|
|
x[j] = [xj];
|
|
}
|
|
// return vector
|
|
return new DenseMatrix({
|
|
data: x,
|
|
size: [rows, 1]
|
|
});
|
|
};
|
|
|
|
var _sparseForwardSubstitution = function (m, b) {
|
|
// validate matrix and vector, return copy of column vector b
|
|
b = substitutionValidation(m, b);
|
|
// rows & columns
|
|
var rows = m._size[0];
|
|
var columns = m._size[1];
|
|
// matrix arrays
|
|
var values = m._values;
|
|
var index = m._index;
|
|
var ptr = m._ptr;
|
|
// result arrays
|
|
var xvalues = [];
|
|
var xindex = [];
|
|
var xptr = [];
|
|
// vars
|
|
var i, k;
|
|
// init ptr
|
|
xptr.push(0);
|
|
// forward solve m * x = b, loop columns
|
|
for (var j = 0; j < columns; j++) {
|
|
// b[j]
|
|
var bj = b[j] || 0;
|
|
// forward substitution (outer product) avoids inner looping when bj == 0
|
|
if (!equalScalar(bj, 0)) {
|
|
// value @ [j, j]
|
|
var vjj = 0;
|
|
// last index in column
|
|
var l = ptr[j + 1];
|
|
// values in column, find value @ [j, j]
|
|
for (k = ptr[j]; k < l; k++) {
|
|
// row
|
|
i = index[k];
|
|
// check row
|
|
if (i === j) {
|
|
// update vjj
|
|
vjj = values[k];
|
|
}
|
|
else if (i > j) {
|
|
// exit loop
|
|
break;
|
|
}
|
|
}
|
|
// at this point we must have a value @ [j, j]
|
|
if (equalScalar(vjj, 0)) {
|
|
// system cannot be solved, there is no value @ [j, j]
|
|
throw new Error('Linear system cannot be solved since matrix is singular');
|
|
}
|
|
// calculate xj
|
|
var xj = divideScalar(bj, vjj);
|
|
// values in column, continue from last loop
|
|
for (; k < l; k++) {
|
|
// row
|
|
i = index[k];
|
|
// update copy of b
|
|
b[i] = subtract(b[i] || 0, multiply(xj, values[k]));
|
|
}
|
|
// check for non zero
|
|
if (!equalScalar(xj, 0)) {
|
|
// value @ row i
|
|
xvalues.push(xj);
|
|
// row
|
|
xindex.push(j);
|
|
}
|
|
}
|
|
}
|
|
// update ptr
|
|
xptr.push(xvalues.length);
|
|
// return column vector
|
|
return new SparseMatrix({
|
|
values: xvalues,
|
|
index: xindex,
|
|
ptr: xptr,
|
|
size: [rows, 1]
|
|
});
|
|
};
|
|
|
|
return lsolve;
|
|
}
|
|
|
|
exports.name = 'lsolve';
|
|
exports.factory = factory;
|