155 lines
4.0 KiB
JavaScript

'use strict'
function factory (type, config, load, typed, math) {
const FunctionNode = math.expression.node.FunctionNode
const OperatorNode = math.expression.node.OperatorNode
const SymbolNode = math.expression.node.SymbolNode
// TODO commutative/associative properties rely on the arguments
// e.g. multiply is not commutative for matrices
// The properties should be calculated from an argument to simplify, or possibly something in math.config
// the other option is for typed() to specify a return type so that we can evaluate the type of arguments
const commutative = {
'add': true,
'multiply': true
}
const associative = {
'add': true,
'multiply': true
}
function isCommutative (node, context) {
if (!type.isOperatorNode(node)) {
return true
}
const name = node.fn.toString()
if (context && context.hasOwnProperty(name) && context[name].hasOwnProperty('commutative')) {
return context[name].commutative
}
return commutative[name] || false
}
function isAssociative (node, context) {
if (!type.isOperatorNode(node)) {
return false
}
const name = node.fn.toString()
if (context && context.hasOwnProperty(name) && context[name].hasOwnProperty('associative')) {
return context[name].associative
}
return associative[name] || false
}
/**
* Flatten all associative operators in an expression tree.
* Assumes parentheses have already been removed.
*/
function flatten (node) {
if (!node.args || node.args.length === 0) {
return node
}
node.args = allChildren(node)
for (let i = 0; i < node.args.length; i++) {
flatten(node.args[i])
}
}
/**
* Get the children of a node as if it has been flattened.
* TODO implement for FunctionNodes
*/
function allChildren (node) {
let op
const children = []
const findChildren = function (node) {
for (let i = 0; i < node.args.length; i++) {
const child = node.args[i]
if (type.isOperatorNode(child) && op === child.op) {
findChildren(child)
} else {
children.push(child)
}
}
}
if (isAssociative(node)) {
op = node.op
findChildren(node)
return children
} else {
return node.args
}
}
/**
* Unflatten all flattened operators to a right-heavy binary tree.
*/
function unflattenr (node) {
if (!node.args || node.args.length === 0) {
return
}
const makeNode = createMakeNodeFunction(node)
const l = node.args.length
for (let i = 0; i < l; i++) {
unflattenr(node.args[i])
}
if (l > 2 && isAssociative(node)) {
let curnode = node.args.pop()
while (node.args.length > 0) {
curnode = makeNode([node.args.pop(), curnode])
}
node.args = curnode.args
}
}
/**
* Unflatten all flattened operators to a left-heavy binary tree.
*/
function unflattenl (node) {
if (!node.args || node.args.length === 0) {
return
}
const makeNode = createMakeNodeFunction(node)
const l = node.args.length
for (let i = 0; i < l; i++) {
unflattenl(node.args[i])
}
if (l > 2 && isAssociative(node)) {
let curnode = node.args.shift()
while (node.args.length > 0) {
curnode = makeNode([curnode, node.args.shift()])
}
node.args = curnode.args
}
}
function createMakeNodeFunction (node) {
if (type.isOperatorNode(node)) {
return function (args) {
try {
return new OperatorNode(node.op, node.fn, args, node.implicit)
} catch (err) {
console.error(err)
return []
}
}
} else {
return function (args) {
return new FunctionNode(new SymbolNode(node.name), args)
}
}
}
return {
createMakeNodeFunction: createMakeNodeFunction,
isCommutative: isCommutative,
isAssociative: isAssociative,
flatten: flatten,
allChildren: allChildren,
unflattenr: unflattenr,
unflattenl: unflattenl
}
}
exports.factory = factory
exports.math = true