mirror of
https://github.com/josdejong/mathjs.git
synced 2025-12-08 19:46:04 +00:00
- Explicit checks for number of arguments everywhere working with `OperatorNode` and `FunctionNode`. - Fixed #1014: derivative silently ignoring additional arguments.
607 lines
24 KiB
JavaScript
607 lines
24 KiB
JavaScript
'use strict';
|
||
|
||
function factory (type, config, load, typed) {
|
||
var simplify = load(require('./simplify'));
|
||
var simplifyCore = load(require('./simplify/simplifyCore'));
|
||
var simplifyConstant = load(require('./simplify/simplifyConstant'));
|
||
var ArgumentsError = require('../../error/ArgumentsError');
|
||
var parse = load(require('../../expression/function/parse'));
|
||
var number = require('../../utils/number')
|
||
var ConstantNode = load(require('../../expression/node/ConstantNode'));
|
||
var OperatorNode = load(require('../../expression/node/OperatorNode'));
|
||
var SymbolNode = load(require('../../expression/node/SymbolNode'));
|
||
|
||
/**
|
||
* Transform a rationalizable expression in a rational fraction.
|
||
* If rational fraction is one variable polynomial then converts
|
||
* the numerator and denominator in canonical form, with decreasing
|
||
* exponents, returning the coefficients of numerator.
|
||
*
|
||
* Syntax:
|
||
*
|
||
* rationalize(expr)
|
||
* rationalize(expr, detailed)
|
||
* rationalize(expr, scope)
|
||
* rationalize(expr, scope, detailed)
|
||
*
|
||
* Examples:
|
||
*
|
||
* math.rationalize('sin(x)+y') // Error: There is an unsolved function call
|
||
* math.rationalize('2x/y - y/(x+1)') // (2*x^2-y^2+2*x)/(x*y+y)
|
||
* math.rationalize('(2x+1)^6')
|
||
* // 64*x^6+192*x^5+240*x^4+160*x^3+60*x^2+12*x+1
|
||
* math.rationalize('2x/( (2x-1) / (3x+2) ) - 5x/ ( (3x+4) / (2x^2-5) ) + 3')
|
||
* // -20*x^4+28*x^3+104*x^2+6*x-12)/(6*x^2+5*x-4)
|
||
* math.rationalize('x/(1-x)/(x-2)/(x-3)/(x-4) + 2x/ ( (1-2x)/(2-3x) )/ ((3-4x)/(4-5x) )') =
|
||
* // (-30*x^7+344*x^6-1506*x^5+3200*x^4-3472*x^3+1846*x^2-381*x)/
|
||
* // (-8*x^6+90*x^5-383*x^4+780*x^3-797*x^2+390*x-72)
|
||
*
|
||
* math.rationalize('x+x+x+y',{y:1}) // 3*x+1
|
||
* math.rationalize('x+x+x+y',{}) // 3*x+y
|
||
* ret = math.rationalize('x+x+x+y',{},true)
|
||
* // ret.expression=3*x+y, ret.variables = ["x","y"]
|
||
* ret = math.rationalize('-2+5x^2',{},true)
|
||
* // ret.expression=5*x^2-2, ret.variables = ["x"], ret.coefficients=[-2,0,5]
|
||
*
|
||
* See also:
|
||
*
|
||
* simplify
|
||
*
|
||
* @param {Node|string} expr The expression to check if is a polynomial expression
|
||
* @param {Object|boolean} optional scope of expression or true for already evaluated rational expression at input
|
||
* @param {Boolean} detailed optional True if return an object, false if return expression node (default)
|
||
*
|
||
* @return {Object | Expression Node} The rational polynomial of `expr` or na object
|
||
* {Object}
|
||
* {Expression Node} expression: node simplified expression
|
||
* {Expression Node} numerator: simplified numerator of expression
|
||
* {Expression Node | boolean} denominator: simplified denominator or false (if there is no denominator)
|
||
* {Array} variables: variable names
|
||
* {Array} coefficients: coefficients of numerator sorted by increased exponent
|
||
* {Expression Node} node simplified expression
|
||
*
|
||
*/
|
||
var rationalize = typed('rationalize', {
|
||
'string': function (expr) {
|
||
return rationalize(parse(expr), {}, false);
|
||
},
|
||
|
||
'string, boolean': function (expr, detailed) {
|
||
return rationalize(parse(expr), {} , detailed);
|
||
},
|
||
|
||
'string, Object': function (expr, scope) {
|
||
return rationalize(parse(expr), scope, false);
|
||
},
|
||
|
||
'string, Object, boolean': function (expr, scope, detailed) {
|
||
return rationalize(parse(expr), scope, detailed);
|
||
},
|
||
|
||
'Node': function (expr) {
|
||
return rationalize(expr, {}, false);
|
||
},
|
||
|
||
'Node, boolean': function (expr, detailed) {
|
||
return rationalize(expr, {}, detailed);
|
||
},
|
||
|
||
'Node, Object': function (expr, scope) {
|
||
return rationalize(expr, scope, false);
|
||
},
|
||
|
||
'Node, Object, boolean': function (expr, scope, detailed) {
|
||
|
||
var polyRet = polynomial(expr, scope, true) // Check if expression is a rationalizable polynomial
|
||
var nVars = polyRet.variables.length;
|
||
var expr = polyRet.expression;
|
||
|
||
if (nVars>=1) { // If expression in not a constant
|
||
var setRules = rulesRationalize(); // Rules for change polynomial in near canonical form
|
||
expr = expandPower(expr); // First expand power of polynomials (cannot be made from rules!)
|
||
var redoInic = true; // If has change after start, redo the beginning
|
||
var s = ""; // New expression
|
||
var sBefore; // Previous expression
|
||
var rules;
|
||
var eDistrDiv = true
|
||
|
||
expr = simplify(expr, setRules.firstRules); // Apply the initial rules, including succ div rules
|
||
s = expr.toString();
|
||
|
||
|
||
while (true) { // Apply alternately successive division rules and distr.div.rules
|
||
rules = eDistrDiv ? setRules.distrDivRules : setRules.sucDivRules
|
||
expr = simplify(expr,rules); // until no more changes
|
||
eDistrDiv = ! eDistrDiv; // Swap between Distr.Div and Succ. Div. Rules
|
||
|
||
s = expr.toString();
|
||
if (s===sBefore) break // No changes : end of the loop
|
||
|
||
redoInic = true;
|
||
sBefore = s;
|
||
}
|
||
|
||
if (redoInic) { // Apply first rules again without succ div rules (if there are changes)
|
||
expr = simplify(expr,setRules.firstRulesAgain);
|
||
}
|
||
expr = simplify(expr,setRules.finalRules); // Aplly final rules
|
||
|
||
} // NVars >= 1
|
||
|
||
var coefficients=[];
|
||
var retRationalize = {};
|
||
|
||
if (expr.type === 'OperatorNode' && expr.isBinary() && expr.op === '/') { // Separate numerator from denominator
|
||
if (nVars==1) {
|
||
expr.args[0] = polyToCanonical(expr.args[0],coefficients);
|
||
expr.args[1] = polyToCanonical(expr.args[1]);
|
||
}
|
||
if (detailed) {
|
||
retRationalize.numerator = expr.args[0];
|
||
retRationalize.denominator = expr.args[1];
|
||
}
|
||
} else {
|
||
if (nVars==1) expr = polyToCanonical(expr,coefficients);
|
||
if (detailed) {
|
||
retRationalize.numerator = expr;
|
||
retRationalize.denominator = null
|
||
}
|
||
}
|
||
// nVars
|
||
|
||
if (! detailed) return expr;
|
||
retRationalize.coefficients = coefficients;
|
||
retRationalize.variables = polyRet.variables;
|
||
retRationalize.expression = expr;
|
||
return retRationalize;
|
||
} // ^^^^^^^ end of rationalize ^^^^^^^^
|
||
}); // end of typed rationalize
|
||
|
||
/**
|
||
* Function to simplify an expression using an optional scope and
|
||
* return it if the expression is a polynomial expression, i.e.
|
||
* an expression with one or more variables and the operators
|
||
* +, -, *, and ^, where the exponent can only be a positive integer.
|
||
*
|
||
* Syntax:
|
||
*
|
||
* polynomial(expr,scope,extended)
|
||
*
|
||
* @param {Node | string} expr The expression to simplify and check if is polynomial expression
|
||
* @param {object} scope Optional scope for expression simplification
|
||
* @param {boolean} extended Optional. Default is false. When true allows divide operator.
|
||
*
|
||
*
|
||
* @return {Object}
|
||
* {Object} node: node simplified expression
|
||
* {Array} variables: variable names
|
||
*/
|
||
function polynomial (expr, scope, extended) {
|
||
var variables = [];
|
||
var node = simplify(expr,scope); // Resolves any variables and functions with all defined parameters
|
||
extended = !! extended
|
||
|
||
var oper = '+-*' + (extended ? '/' : '');
|
||
recPoly(node)
|
||
var retFunc ={};
|
||
retFunc.expression = node;
|
||
retFunc.variables = variables;
|
||
return retFunc;
|
||
|
||
//-------------------------------------------------------------------------------------------------------
|
||
|
||
/**
|
||
* Function to simplify an expression using an optional scope and
|
||
* return it if the expression is a polynomial expression, i.e.
|
||
* an expression with one or more variables and the operators
|
||
* +, -, *, and ^, where the exponent can only be a positive integer.
|
||
*
|
||
* Syntax:
|
||
*
|
||
* recPoly(node)
|
||
*
|
||
*
|
||
* @param {Node} node The current sub tree expression in recursion
|
||
*
|
||
* @return nothing, throw an exception if error
|
||
*/
|
||
function recPoly(node) {
|
||
var tp = node.type; // node type
|
||
if (tp==='FunctionNode')
|
||
throw new ArgumentsError('There is an unsolved function call') // No function call in polynomial expression
|
||
else if (tp==='OperatorNode') {
|
||
if (node.op === '^' && node.isBinary()) {
|
||
if (node.args[1].type!=='ConstantNode' || ! number.isInteger(parseFloat(node.args[1].value)))
|
||
throw new ArgumentsError('There is a non-integer exponent');
|
||
else
|
||
recPoly(node.args[0]);
|
||
} else {
|
||
if (oper.indexOf(node.op) === -1) throw new ArgumentsError('Operator ' + node.op + ' invalid in polynomial expression');
|
||
for (var i=0;i<node.args.length;i++) {
|
||
recPoly(node.args[i]);
|
||
}
|
||
} // type of operator
|
||
|
||
} else if (tp==='SymbolNode') {
|
||
var name = node.name; // variable name
|
||
var pos = variables.indexOf(name);
|
||
if (pos===-1) // new variable in expression
|
||
variables.push(name);
|
||
|
||
} else if (tp==='ParenthesisNode')
|
||
recPoly(node.content);
|
||
|
||
else if (tp!=='ConstantNode')
|
||
throw new ArgumentsError('type ' + tp + ' is not allowed in polynomial expression')
|
||
|
||
} // end of recPoly
|
||
|
||
} // end of polynomial
|
||
|
||
|
||
//---------------------------------------------------------------------------------------
|
||
/**
|
||
* Return a rule set to rationalize an polynomial expression in rationalize
|
||
*
|
||
* Syntax:
|
||
*
|
||
* rulesRationalize()
|
||
*
|
||
* @return {array} rule set to rationalize an polynomial expression
|
||
*/
|
||
function rulesRationalize() {
|
||
var oldRules = [simplifyCore, // sCore
|
||
{l:"n+n",r:"2*n"},
|
||
{l:"n+-n",r:"0"},
|
||
simplifyConstant, // sConstant
|
||
{l:"n*(n1^-1)",r:"n/n1"},
|
||
{l:"n*n1^-n2",r:"n/n1^n2"},
|
||
{l:"n1^-1",r:"1/n1"},
|
||
{l:"n*(n1/n2)",r:"(n*n1)/n2"},
|
||
{l:"1*n",r:"n"}]
|
||
|
||
var rulesFirst = [
|
||
{ l: '(-n1)/(-n2)', r: 'n1/n2' }, // Unary division
|
||
{ l: '(-n1)*(-n2)', r: 'n1*n2' }, // Unary multiplication
|
||
{ l: 'n1--n2', r:'n1+n2'}, // '--' elimination
|
||
{ l: 'n1-n2', r:'n1+(-n2)'} , // Subtraction turn into add with un<75>ry minus
|
||
{ l:'(n1+n2)*n3', r:'(n1*n3 + n2*n3)' }, // Distributive 1
|
||
{ l:'n1*(n2+n3)', r:'(n1*n2+n1*n3)' }, // Distributive 2
|
||
{ l: 'c1*n + c2*n', r:'(c1+c2)*n'} , // Joining constants
|
||
{ l: '-v*-c', r:'c*v'} , // Inversion constant and variable 1
|
||
{ l: '-v*c', r:'-c*v'} , // Inversion constant and variable 2
|
||
{ l: 'v*-c', r:'-c*v'} , // Inversion constant and variable 3
|
||
{ l: 'v*c', r:'c*v'} , // Inversion constant and variable 4
|
||
{ l: '-(-n1*n2)', r:'(n1*n2)'} , // Unary propagation
|
||
{ l: '-(n1*n2)', r:'(-n1*n2)'} , // Unary propagation
|
||
{ l: '-(-n1+n2)', r:'(n1-n2)'} , // Unary propagation
|
||
{ l: '-(n1+n2)', r:'(-n1-n2)'} , // Unary propagation
|
||
{ l: '(n1^n2)^n3', r:'(n1^(n2*n3))'} , // Power to Power
|
||
{ l: '-(-n1/n2)', r:'(n1/n2)'} , // Division and Unary
|
||
{ l: '-(n1/n2)', r:'(-n1/n2)'} ]; // Divisao and Unary
|
||
|
||
var rulesDistrDiv=[
|
||
{ l:'(n1/n2 + n3/n4)', r:'((n1*n4 + n3*n2)/(n2*n4))' }, // Sum of fractions
|
||
{ l:'(n1/n2 + n3)', r:'((n1 + n3*n2)/n2)' }, // Sum fraction with number 1
|
||
{ l:'(n1 + n2/n3)', r:'((n1*n3 + n2)/n3)' } ]; // Sum fraction with number 1
|
||
|
||
var rulesSucDiv=[
|
||
{ l:'(n1/(n2/n3))', r:'((n1*n3)/n2)'} , // Division simplification
|
||
{ l:'(n1/n2/n3)', r:'(n1/(n2*n3))' } ]
|
||
|
||
var setRules={}; // rules set in 4 steps.
|
||
|
||
// All rules => infinite loop
|
||
// setRules.allRules =oldRules.concat(rulesFirst,rulesDistrDiv,rulesSucDiv);
|
||
|
||
setRules.firstRules =oldRules.concat(rulesFirst,rulesSucDiv); // First rule set
|
||
setRules.distrDivRules = rulesDistrDiv; // Just distr. div. rules
|
||
setRules.sucDivRules = rulesSucDiv; // Jus succ. div. rules
|
||
setRules.firstRulesAgain = oldRules.concat(rulesFirst); // Last rules set without succ. div.
|
||
|
||
// Division simplification
|
||
|
||
// Second rule set.
|
||
// There is no aggregate expression with parentesis, but the only variable can be scattered.
|
||
setRules.finalRules=[ simplifyCore, // simplify.rules[0]
|
||
{ l: 'n*-n', r: '-n^2' }, // Joining multiply with power 1
|
||
{ l: 'n*n', r: 'n^2' }, // Joining multiply with power 2
|
||
simplifyConstant, // simplify.rules[14] old 3rd index in oldRules
|
||
{ l: 'n*-n^n1', r: '-n^(n1+1)' }, // Joining multiply with power 3
|
||
{ l: 'n*n^n1', r: 'n^(n1+1)' }, // Joining multiply with power 4
|
||
{ l: 'n^n1*-n^n2', r: '-n^(n1+n2)' }, // Joining multiply with power 5
|
||
{ l: 'n^n1*n^n2', r: 'n^(n1+n2)' }, // Joining multiply with power 6
|
||
{ l: 'n^n1*-n', r: '-n^(n1+1)' }, // Joining multiply with power 7
|
||
{ l: 'n^n1*n', r: 'n^(n1+1)' }, // Joining multiply with power 8
|
||
{ l: 'n^n1/-n', r: '-n^(n1-1)' }, // Joining multiply with power 8
|
||
{ l: 'n^n1/n', r: 'n^(n1-1)' }, // Joining division with power 1
|
||
{ l: 'n/-n^n1', r: '-n^(1-n1)' }, // Joining division with power 2
|
||
{ l: 'n/n^n1', r: 'n^(1-n1)' }, // Joining division with power 3
|
||
{ l: 'n^n1/-n^n2', r: 'n^(n1-n2)' }, // Joining division with power 4
|
||
{ l: 'n^n1/n^n2', r: 'n^(n1-n2)' }, // Joining division with power 5
|
||
{ l: 'n1+(-n2*n3)', r: 'n1-n2*n3' }, // Solving useless parenthesis 1
|
||
{ l: 'v*(-c)', r: '-c*v' }, // Solving useless unary 2
|
||
{ l: 'n1+-n2', r: 'n1-n2' }, // Solving +- together (new!)
|
||
{ l: 'v*c', r: 'c*v' }, // inversion constant with variable
|
||
{ l: '(n1^n2)^n3', r:'(n1^(n2*n3))'}, // Power to Power
|
||
|
||
];
|
||
return setRules;
|
||
} // End rulesRationalize
|
||
|
||
//---------------------------------------------------------------------------------------
|
||
/**
|
||
* Expand recursively a tree node for handling with expressions with exponents
|
||
* (it's not for constants, symbols or functions with exponents)
|
||
* PS: The other parameters are internal for recursion
|
||
*
|
||
* Syntax:
|
||
*
|
||
* expandPower(node)
|
||
*
|
||
* @param {Node} node Current expression node
|
||
* @param {node} parent Parent current node inside the recursion
|
||
* @param (int} Parent number of chid inside the rercursion
|
||
*
|
||
* @return {node} node expression with all powers expanded.
|
||
*/
|
||
function expandPower(node,parent,indParent) {
|
||
var tp = node.type;
|
||
var internal = (arguments.length>1) // TRUE in internal calls
|
||
|
||
if (tp === 'OperatorNode' && node.isBinary()) {
|
||
var does = false;
|
||
if (node.op==='^') { // First operator: Parenthesis or UnaryMinus
|
||
if ( ( node.args[0].type==='ParenthesisNode' ||
|
||
node.args[0].type==='OperatorNode' )
|
||
&& (node.args[1].type==='ConstantNode') ) { // Second operator: Constant
|
||
var val = parseFloat(node.args[1].value);
|
||
does = (val>=2 && number.isInteger(val));
|
||
}
|
||
}
|
||
|
||
if (does) { // Exponent >= 2
|
||
//Before:
|
||
// operator A --> Subtree
|
||
// parent pow
|
||
// constant
|
||
//
|
||
if (val>2) { // Exponent > 2,
|
||
//AFTER: (exponent > 2)
|
||
// operator A --> Subtree
|
||
// parent *
|
||
// deep clone (operator A --> Subtree
|
||
// pow
|
||
// constant - 1
|
||
//
|
||
var nEsqTopo = node.args[0];
|
||
var nDirTopo = new OperatorNode('^', 'pow', [node.args[0].cloneDeep(),new ConstantNode(val-1)]);
|
||
node = new OperatorNode('*', 'multiply', [nEsqTopo, nDirTopo]);
|
||
} else // Expo = 2 - no power
|
||
|
||
//AFTER: (exponent = 2)
|
||
// operator A --> Subtree
|
||
// parent oper
|
||
// deep clone (operator A --> Subtree)
|
||
//
|
||
node = new OperatorNode('*', 'multiply', [node.args[0], node.args[0].cloneDeep()]);
|
||
|
||
if (internal) // Change parent references in internal recursive calls
|
||
if (indParent==='content')
|
||
parent.content = node;
|
||
else
|
||
parent.args[indParent] = node
|
||
} // does
|
||
} // binary OperatorNode
|
||
|
||
if (tp==='ParenthesisNode' ) // Recursion
|
||
expandPower(node.content,node,'content');
|
||
else if (tp!=='ConstantNode' && tp!=='SymbolNode')
|
||
for (var i=0;i<node.args.length;i++)
|
||
expandPower(node.args[i],node,i);
|
||
|
||
|
||
if (! internal ) return node // return the root node
|
||
|
||
} // End expandPower
|
||
|
||
|
||
//---------------------------------------------------------------------------------------
|
||
/**
|
||
* Auxilary function for rationalize
|
||
* Convert near canonical polynomial in one variable in a canonical polynomial
|
||
* with one term for each exponent in decreasing order
|
||
*
|
||
* Syntax:
|
||
*
|
||
* polyToCanonical(node [, coefficients])
|
||
*
|
||
* @param {Node | string} expr The near canonical polynomial expression to convert in a a canonical polynomial expression
|
||
*
|
||
* The string or tree expression needs to be at below syntax, with free spaces:
|
||
* ( (^(-)? | [+-]? )cte (*)? var (^expo)? | cte )+
|
||
* Where 'var' is one variable with any valid name
|
||
* 'cte' are real numeric constants with any value. It can be omitted if equal than 1
|
||
* 'expo' are integers greater than 0. It can be omitted if equal than 1.
|
||
*
|
||
* @param {array} coefficients Optional returns coefficients sorted by increased exponent
|
||
*
|
||
*
|
||
* @return {node} new node tree with one variable polynomial or string error.
|
||
*/
|
||
function polyToCanonical(node,coefficients) {
|
||
var i;
|
||
|
||
if (coefficients===undefined)
|
||
coefficients = []; // coefficients.
|
||
|
||
coefficients[0] = 0; // index is the exponent
|
||
var o = {};
|
||
o.cte=1;
|
||
o.oper='+';
|
||
|
||
// fire: mark with * or ^ when finds * or ^ down tree, reset to "" with + and -.
|
||
// It is used to deduce the exponent: 1 for *, 0 for "".
|
||
o.fire='';
|
||
|
||
var maxExpo=0; // maximum exponent
|
||
var varname=''; // var name
|
||
|
||
recurPol(node,null,o);
|
||
maxExpo = coefficients.length-1;
|
||
var first=true;
|
||
|
||
for (i=maxExpo;i>=0 ;i--) {
|
||
if (coefficients[i]===0) continue;
|
||
var n1 = new ConstantNode(
|
||
first ? coefficients[i] : Math.abs(coefficients[i]));
|
||
var op = coefficients[i]<0 ? '-' : '+';
|
||
|
||
if (i>0) { // Is not a constant without variable
|
||
var n2 = new SymbolNode(varname);
|
||
if (i>1) {
|
||
var n3 = new ConstantNode(i);
|
||
n2 = new OperatorNode('^', 'pow', [n2, n3]);
|
||
}
|
||
if (coefficients[i]===-1 && first)
|
||
n1 = new OperatorNode('-', 'unaryMinus', [n2]);
|
||
else if (Math.abs(coefficients[i])===1)
|
||
n1 = n2;
|
||
else
|
||
n1 = new OperatorNode('*', 'multiply', [n1, n2]);
|
||
}
|
||
|
||
var no;
|
||
if (first)
|
||
no = n1;
|
||
else if (op==='+')
|
||
no = new OperatorNode('+', 'add', [no, n1]);
|
||
else
|
||
no = new OperatorNode('-', 'subtract', [no, n1]);
|
||
|
||
first = false;
|
||
} // for
|
||
|
||
if (first)
|
||
return new ConstantNode(0);
|
||
else
|
||
return no;
|
||
|
||
/**
|
||
* Recursive auxilary function inside polyToCanonical for
|
||
* converting expression in canonical form
|
||
*
|
||
* Syntax:
|
||
*
|
||
* recurPol(node, noPai, obj)
|
||
*
|
||
* @param {Node} node The current subpolynomial expression
|
||
* @param {Node | Null} noPai The current parent node
|
||
* @param {object} obj Object with many internal flags
|
||
*
|
||
* @return {} No return. If error, throws an exception
|
||
*/
|
||
function recurPol(node,noPai,o) {
|
||
|
||
var tp = node.type;
|
||
if (tp==='FunctionNode') // ***** FunctionName *****
|
||
// No function call in polynomial expression
|
||
throw new ArgumentsError('There is an unsolved function call')
|
||
|
||
else if (tp==='OperatorNode') { // ***** OperatorName *****
|
||
if ('+-*^'.indexOf(node.op) === -1) throw new ArgumentsError('Operator ' + node.op + ' invalid');
|
||
|
||
if (noPai!==null) {
|
||
// -(unary),^ : children of *,+,-
|
||
if ( (node.fn==='unaryMinus' || node.fn==='pow') && noPai.fn !=='add' &&
|
||
noPai.fn!=='subtract' && noPai.fn!=='multiply' )
|
||
throw new ArgumentsError('Invalid ' + node.op + ' placing')
|
||
|
||
// -,+,* : children of +,-
|
||
if ((node.fn==='subtract' || node.fn==='add' || node.fn==='multiply') &&
|
||
noPai.fn!=='add' && noPai.fn!=='subtract' )
|
||
throw new ArgumentsError('Invalid ' + node.op + ' placing');
|
||
|
||
// -,+ : first child
|
||
if ((node.fn==='subtract' || node.fn==='add' ||
|
||
node.fn==='unaryMinus' ) && o.noFil!==0 )
|
||
throw new ArgumentsError('Invalid ' + node.op + ' placing')
|
||
} // Has parent
|
||
|
||
// Firers: ^,* Old: ^,&,-(unary): firers
|
||
if (node.op==='^' || node.op==='*') o.fire = node.op;
|
||
|
||
for (var i=0;i<node.args.length;i++) {
|
||
// +,-: reset fire
|
||
if (node.fn==='unaryMinus') o.oper='-';
|
||
if (node.op==='+' || node.fn==='subtract' ) {
|
||
o.fire = '';
|
||
o.cte = 1; // default if there is no constant
|
||
o.oper = (i===0 ? '+' : node.op);
|
||
}
|
||
o.noFil = i; // number of son
|
||
recurPol(node.args[i],node,o);
|
||
} // for in children
|
||
|
||
} else if (tp==='SymbolNode') { // ***** SymbolName *****
|
||
if (node.name !== varname && varname!=='')
|
||
throw new ArgumentsError('There is more than one variable')
|
||
varname = node.name;
|
||
if (noPai === null) {
|
||
coefficients[1] = 1;
|
||
return;
|
||
}
|
||
|
||
// ^: Symbol is First child
|
||
if (noPai.op==='^' && o.noFil!==0 )
|
||
throw new ArgumentsError('In power the variable should be the first parameter')
|
||
|
||
// *: Symbol is Second child
|
||
if (noPai.op==='*' && o.noFil!==1 )
|
||
throw new ArgumentsError('In multiply the variable should be the second parameter')
|
||
|
||
// Symbol: firers '',* => it means there is no exponent above, so it's 1 (cte * var)
|
||
if (o.fire==='' || o.fire==='*' ) {
|
||
if (maxExpo<1) coefficients[1]=0;
|
||
coefficients[1] += o.cte* (o.oper==='+' ? 1 : -1);
|
||
maxExpo = Math.max(1,maxExpo);
|
||
}
|
||
|
||
} else if (tp==='ConstantNode') {
|
||
var valor = parseFloat(node.value);
|
||
if (noPai === null) {
|
||
coefficients[0] = valor;
|
||
return;
|
||
}
|
||
if (noPai.op==='^') {
|
||
// cte: second child of power
|
||
if (o.noFil!==1) throw new ArgumentsError('Constant cannot be powered')
|
||
|
||
if (! number.isInteger(valor) || valor<=0 )
|
||
throw new ArgumentsError('Non-integer exponent is not allowed');
|
||
|
||
for (var i=maxExpo+1;i<valor;i++) coefficients[i]=0;
|
||
if (valor>maxExpo) coefficients[valor]=0;
|
||
coefficients[valor] += o.cte * (o.oper==='+' ? 1 : -1)
|
||
maxExpo = Math.max(valor,maxExpo);
|
||
return;
|
||
}
|
||
o.cte = valor;
|
||
|
||
// Cte: firer '' => There is no exponent and no multiplication, so the exponent is 0.
|
||
if (o.fire==='')
|
||
coefficients[0] += o.cte * (o.oper==='+'? 1 : -1);
|
||
|
||
|
||
} else
|
||
throw new ArgumentsError('Type ' + tp + ' is not allowed');
|
||
return;
|
||
} // End of recurPol
|
||
|
||
} // End of polyToCanonical
|
||
|
||
return rationalize;
|
||
} // end of factory
|
||
|
||
exports.name = 'rationalize';
|
||
exports.factory = factory; |