80 lines
2.0 KiB
JavaScript

import { factory } from '../../utils/factory'
const name = 'stirlingS2'
const dependencies = [
'typed',
'addScalar',
'subtract',
'multiplyScalar',
'divideScalar',
'pow',
'factorial',
'combinations',
'isNegative',
'isInteger',
'larger'
]
export const createStirlingS2 = /* #__PURE__ */ factory(name, dependencies, (
{
typed,
addScalar,
subtract,
multiplyScalar,
divideScalar,
pow,
factorial,
combinations,
isNegative,
isInteger,
larger
}
) => {
/**
* The Stirling numbers of the second kind, counts the number of ways to partition
* a set of n labelled objects into k nonempty unlabelled subsets.
* stirlingS2 only takes integer arguments.
* The following condition must be enforced: k <= n.
*
* If n = k or k = 1, then s(n,k) = 1
*
* Syntax:
*
* math.stirlingS2(n, k)
*
* Examples:
*
* math.stirlingS2(5, 3) //returns 25
*
* See also:
*
* bellNumbers
*
* @param {Number | BigNumber} n Total number of objects in the set
* @param {Number | BigNumber} k Number of objects in the subset
* @return {Number | BigNumber} S(n,k)
*/
return typed(name, {
'number | BigNumber, number | BigNumber': function (n, k) {
if (!isInteger(n) || isNegative(n) || !isInteger(k) || isNegative(k)) {
throw new TypeError('Non-negative integer value expected in function stirlingS2')
} else if (larger(k, n)) {
throw new TypeError('k must be less than or equal to n in function stirlingS2')
}
// 1/k! Sum(i=0 -> k) [(-1)^(k-i)*C(k,j)* i^n]
const kFactorial = factorial(k)
let result = 0
for (let i = 0; i <= k; i++) {
const negativeOne = pow(-1, subtract(k, i))
const kChooseI = combinations(k, i)
const iPower = pow(i, n)
result = addScalar(result, multiplyScalar(multiplyScalar(kChooseI, iPower), negativeOne))
}
return divideScalar(result, kFactorial)
}
})
})