mirror of
https://github.com/josdejong/mathjs.git
synced 2026-01-18 14:59:29 +00:00
80 lines
2.0 KiB
JavaScript
80 lines
2.0 KiB
JavaScript
import { factory } from '../../utils/factory'
|
|
|
|
const name = 'stirlingS2'
|
|
const dependencies = [
|
|
'typed',
|
|
'addScalar',
|
|
'subtract',
|
|
'multiplyScalar',
|
|
'divideScalar',
|
|
'pow',
|
|
'factorial',
|
|
'combinations',
|
|
'isNegative',
|
|
'isInteger',
|
|
'larger'
|
|
]
|
|
|
|
export const createStirlingS2 = /* #__PURE__ */ factory(name, dependencies, (
|
|
{
|
|
typed,
|
|
addScalar,
|
|
subtract,
|
|
multiplyScalar,
|
|
divideScalar,
|
|
pow,
|
|
factorial,
|
|
combinations,
|
|
isNegative,
|
|
isInteger,
|
|
larger
|
|
}
|
|
) => {
|
|
/**
|
|
* The Stirling numbers of the second kind, counts the number of ways to partition
|
|
* a set of n labelled objects into k nonempty unlabelled subsets.
|
|
* stirlingS2 only takes integer arguments.
|
|
* The following condition must be enforced: k <= n.
|
|
*
|
|
* If n = k or k = 1, then s(n,k) = 1
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.stirlingS2(n, k)
|
|
*
|
|
* Examples:
|
|
*
|
|
* math.stirlingS2(5, 3) //returns 25
|
|
*
|
|
* See also:
|
|
*
|
|
* bellNumbers
|
|
*
|
|
* @param {Number | BigNumber} n Total number of objects in the set
|
|
* @param {Number | BigNumber} k Number of objects in the subset
|
|
* @return {Number | BigNumber} S(n,k)
|
|
*/
|
|
return typed(name, {
|
|
'number | BigNumber, number | BigNumber': function (n, k) {
|
|
if (!isInteger(n) || isNegative(n) || !isInteger(k) || isNegative(k)) {
|
|
throw new TypeError('Non-negative integer value expected in function stirlingS2')
|
|
} else if (larger(k, n)) {
|
|
throw new TypeError('k must be less than or equal to n in function stirlingS2')
|
|
}
|
|
|
|
// 1/k! Sum(i=0 -> k) [(-1)^(k-i)*C(k,j)* i^n]
|
|
const kFactorial = factorial(k)
|
|
let result = 0
|
|
for (let i = 0; i <= k; i++) {
|
|
const negativeOne = pow(-1, subtract(k, i))
|
|
const kChooseI = combinations(k, i)
|
|
const iPower = pow(i, n)
|
|
|
|
result = addScalar(result, multiplyScalar(multiplyScalar(kChooseI, iPower), negativeOne))
|
|
}
|
|
|
|
return divideScalar(result, kFactorial)
|
|
}
|
|
})
|
|
})
|