2014-03-15 23:05:20 +01:00

153 lines
4.0 KiB
JavaScript

module.exports = function (math) {
var util = require('../../util/index'),
Matrix = require('../../type/Matrix'),
object = util.object,
string = util.string;
/**
* @constructor det
* Calculate the determinant of a matrix
*
* det(x)
*
* @param {Array | Matrix} x
* @return {Number} determinant
*/
math.det = function det (x) {
if (arguments.length != 1) {
throw new math.error.ArgumentsError('det', arguments.length, 1);
}
var size;
if (x instanceof Matrix) {
size = x.size();
}
else if (x instanceof Array) {
x = new Matrix(x);
size = x.size();
}
else {
// a scalar
size = [];
}
switch (size.length) {
case 0:
// scalar
return object.clone(x);
case 1:
// vector
if (size[0] == 1) {
return object.clone(x.valueOf()[0]);
}
else {
throw new RangeError('Matrix must be square ' +
'(size: ' + string.format(size) + ')');
}
case 2:
// two dimensional array
var rows = size[0];
var cols = size[1];
if (rows == cols) {
return _det(x.clone().valueOf(), rows, cols);
}
else {
throw new RangeError('Matrix must be square ' +
'(size: ' + string.format(size) + ')');
}
default:
// multi dimensional array
throw new RangeError('Matrix must be two dimensional ' +
'(size: ' + string.format(size) + ')');
}
};
/**
* Calculate the determinant of a matrix
* @param {Array[]} matrix A square, two dimensional matrix
* @param {Number} rows Number of rows of the matrix (zero-based)
* @param {Number} cols Number of columns of the matrix (zero-based)
* @returns {Number} det
* @private
*/
function _det (matrix, rows, cols) {
if (rows == 1) {
// this is a 1 x 1 matrix
return matrix[0][0];
}
else if (rows == 2) {
// this is a 2 x 2 matrix
// the determinant of [a11,a12;a21,a22] is det = a11*a22-a21*a12
return math.subtract(
math.multiply(matrix[0][0], matrix[1][1]),
math.multiply(matrix[1][0], matrix[0][1])
);
}
else {
// this is an n x n matrix
var a;
var d = 1;
var lead = 0;
for (var r = 0; r < rows; r++) {
if (lead >= cols) {
break;
}
var i = r;
// Find the pivot element.
while (matrix[i][lead] == 0) {
i++;
if (i == rows) {
i = r;
lead++;
if (lead == cols) {
// We found the last pivot.
if (object.deepEqual(matrix, math.eye(rows).valueOf())) {
return math.round(d, 6); // FIXME: why is d rounded to 6 here?
} else {
return 0;
}
}
}
}
if (i != r) {
// Swap rows i and r, which negates the determinant.
for (a = 0; a < cols; a++) {
var temp = matrix[i][a];
matrix[i][a] = matrix[r][a];
matrix[r][a] = temp;
}
d *= -1;
}
// Scale row r and the determinant simultaneously.
var div = matrix[r][lead];
for (a = 0; a < cols; a++) {
matrix[r][a] = matrix[r][a] / div;
}
d *= div;
// Back-substitute upwards.
for (var j = 0; j < rows; j++) {
if (j != r) {
// Taking linear combinations does not change the det.
var c = matrix[j][lead];
for (a = 0; a < cols; a++) {
matrix[j][a] = matrix[j][a] - matrix[r][a] * c;
}
}
}
lead++; // Now looking for a pivot further right.
}
// If reduction did not result in the identity, the matrix is singular.
if (object.deepEqual(matrix, math.eye(rows).valueOf())) {
return math.round(d, 6); // FIXME: why is d rounded to 6 here?
} else {
return 0;
}
}
}
};