2014-05-18 22:21:00 +02:00

139 lines
4.5 KiB
JavaScript

module.exports = function (math) {
var Matrix = require('../../type/Matrix'),
BigNumber = math.type.BigNumber,
collection = require('../../type/collection'),
isCollection = collection.isCollection,
isString = require('../../util/string').isString,
DEFAULT_NORMALIZATION = 'unbiased';
/**
* Compute the variance of a matrix or a list with values.
* In case of a (multi dimensional) array or matrix, the variance over all
* elements will be calculated.
*
* Optionally, the type of normalization can be specified as second
* parameter. The parameter `normalization` can be one of the following values:
*
* - 'unbiased' (default) The sum of squared errors is divided by (n - 1)
* - 'uncorrected' The sum of squared errors is divided by n
* - 'biased' The sum of squared errors is divided by (n + 1)
* Note that older browser may not like the variable name `var`. In that
* case, the function can be called as `math['var'](...)` instead of
* `math.var(...)`.
*
* Syntax:
*
* math.var(a, b, c, ...)
* math.var(A)
* math.var(A, normalization)
*
* Examples:
*
* var math = mathjs();
*
* math.var(2, 4, 6); // returns 4
* math.var([2, 4, 6, 8]); // returns 6.666666666666667
* math.var([2, 4, 6, 8], 'uncorrected'); // returns 5
* math.var([2, 4, 6, 8], 'biased'); // returns 4
*
* math.var([[1, 2, 3], [4, 5, 6]]); // returns 3.5
*
* See also:
*
* mean, median, max, min, prod, std, sum
*
* @param {Array | Matrix} array
* A single matrix or or multiple scalar values
* @param {String} [normalization='unbiased']
* Determines how to normalize the variance.
* Choose 'unbiased' (default), 'uncorrected', or 'biased'.
* @return {*} The variance
*/
math['var'] = function variance(array, normalization) {
if (arguments.length == 0) {
throw new SyntaxError('Function var requires one or more parameters (0 provided)');
}
if (isCollection(array)) {
if (arguments.length == 1) {
// var([a, b, c, d, ...])
return _var(array, DEFAULT_NORMALIZATION);
}
else if (arguments.length == 2) {
// var([a, b, c, d, ...], normalization)
if (!isString(normalization)) {
throw new Error('String expected for parameter normalization');
}
return _var(array, normalization);
}
/* TODO: implement var(A [, normalization], dim)
else if (arguments.length == 3) {
// var([a, b, c, d, ...], dim)
// var([a, b, c, d, ...], normalization, dim)
//return collection.reduce(arguments[0], arguments[1], ...);
}
*/
else {
throw new SyntaxError('Wrong number of parameters');
}
}
else {
// var(a, b, c, d, ...)
return _var(arguments, DEFAULT_NORMALIZATION);
}
};
/**
* Recursively calculate the variance of an n-dimensional array
* @param {Array} array
* @param {String} normalization
* Determines how to normalize the variance:
* - 'unbiased' The sum of squared errors is divided by (n - 1)
* - 'uncorrected' The sum of squared errors is divided by n
* - 'biased' The sum of squared errors is divided by (n + 1)
* @return {Number | BigNumber} variance
* @private
*/
function _var(array, normalization) {
var sum = 0;
var num = 0;
// calculate the mean and number of elements
collection.deepForEach(array, function (value) {
sum = math.add(sum, value);
num++;
});
if (num === 0) throw new Error('Cannot calculate var of an empty array');
var mean = math.divide(sum, num);
// calculate the variance
sum = 0;
collection.deepForEach(array, function (value) {
var diff = math.subtract(value, mean);
sum = math.add(sum, math.multiply(diff, diff));
});
switch (normalization) {
case 'uncorrected':
return math.divide(sum, num);
case 'biased':
return math.divide(sum, num + 1);
case 'unbiased':
var zero = (sum instanceof BigNumber) ? new BigNumber(0) : 0;
return (num == 1) ? zero : math.divide(sum, num - 1);
default:
throw new Error('Unknown normalization "' + normalization + '". ' +
'Choose "unbiased" (default), "uncorrected", or "biased".');
}
}
};